Efficient inversion and uncertainty quantification of a tephra fallout model
An efficient and effective inversion and uncertainty quantification approach is proposed for estimating eruption parameters given a data set collected from a tephra deposit. The approach is model independent and here is applied using Tephra2, a code that simulates advective and dispersive tephra tra...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Solid earth 2017-01, Vol.122 (1), p.281-294 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 294 |
---|---|
container_issue | 1 |
container_start_page | 281 |
container_title | Journal of geophysical research. Solid earth |
container_volume | 122 |
creator | White, J. T. Connor, C. B. Connor, L. Hasenaka, T. |
description | An efficient and effective inversion and uncertainty quantification approach is proposed for estimating eruption parameters given a data set collected from a tephra deposit. The approach is model independent and here is applied using Tephra2, a code that simulates advective and dispersive tephra transport and deposition. The Levenburg‐Marquardt algorithm is combined with formal Tikhonov and subspace regularization to invert eruption parameters; a linear equation for conditional uncertainty propagation is used to estimate posterior parameter uncertainty. Both the inversion and uncertainty analysis support simultaneous analysis of the full eruption and wind field parameterization. The combined inversion/uncertainty quantification approach is applied to the 1992 eruption of Cerro Negro and the 2011 Kirishima‐Shinmoedake eruption. While eruption mass uncertainty is reduced by inversion against tephra isomass data, considerable uncertainty remains for many eruption and wind field parameters, such as plume height. Supplementing the inversion data set with tephra granulometry data is shown to further reduce the uncertainty of most eruption and wind field parameters. The eruption mass of the 2011 Kirishima‐Shinmoedake eruption is 0.82 × 1010 kg to 2.6 × 1010 kg, with 95% confidence; total eruption mass for the 1992 Cerro Negro eruption is 4.2 × 1010 kg to 7.3 × 1010 kg, with 95% confidence. These results indicate that eruption classification and characterization of eruption parameters can be significantly improved through this uncertainty quantification approach.
Key Points
An efficient inversion and uncertainty quantification approach for eruption and wind field parameters is demonstrated for two eruption events
The worth of tephra grain size data to reduce eruption and wind field parameter uncertainty is quantified
Posterior eruption and wind field parameter uncertainty is shown to be eruption and tephra data set specific |
doi_str_mv | 10.1002/2016JB013682 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884109623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1911201118</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4349-9959e2e9d58da67f9c1932cd9c2a5c69e8026a00db2c6a2e51325636a2d6a6543</originalsourceid><addsrcrecordid>eNqN0cFKAzEQANBFFCy1Nz8g4MWD1UyyySZHW2q1FATRc4jZLKZskzbZVfr3plREPIi5ZCZ5hMxMUZwDvgaMyQ3BwBcTDJQLclQMCHA5lpTx4-8Y6GkxSmmF8xL5CMpBsZw1jTPO-g45_25jcsEj7WvUe2Njp53vdmjba9-57HS3vw4N0qizm7eoUaPbNvQdWofatmfFSc6THX3tw-LlbvY8vR8vH-cP09vlWJe0zD-RTFpiZc1ErXnVSAOSElNLQzQzXFqBCdcY16_EcE0sA0oYpzmsueaspMPi8vDuJoZtb1On1i4Z27ba29AnBUKUgCUn9B-0qgSthNzTi190FfrocyEKJEDuL4DI6uqgTAwpRduoTXRrHXcKsNoPQv0cROb0wD9ca3d_WrWYP01YboWkn-4Bh3M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1911201118</pqid></control><display><type>article</type><title>Efficient inversion and uncertainty quantification of a tephra fallout model</title><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><creator>White, J. T. ; Connor, C. B. ; Connor, L. ; Hasenaka, T.</creator><creatorcontrib>White, J. T. ; Connor, C. B. ; Connor, L. ; Hasenaka, T.</creatorcontrib><description>An efficient and effective inversion and uncertainty quantification approach is proposed for estimating eruption parameters given a data set collected from a tephra deposit. The approach is model independent and here is applied using Tephra2, a code that simulates advective and dispersive tephra transport and deposition. The Levenburg‐Marquardt algorithm is combined with formal Tikhonov and subspace regularization to invert eruption parameters; a linear equation for conditional uncertainty propagation is used to estimate posterior parameter uncertainty. Both the inversion and uncertainty analysis support simultaneous analysis of the full eruption and wind field parameterization. The combined inversion/uncertainty quantification approach is applied to the 1992 eruption of Cerro Negro and the 2011 Kirishima‐Shinmoedake eruption. While eruption mass uncertainty is reduced by inversion against tephra isomass data, considerable uncertainty remains for many eruption and wind field parameters, such as plume height. Supplementing the inversion data set with tephra granulometry data is shown to further reduce the uncertainty of most eruption and wind field parameters. The eruption mass of the 2011 Kirishima‐Shinmoedake eruption is 0.82 × 1010 kg to 2.6 × 1010 kg, with 95% confidence; total eruption mass for the 1992 Cerro Negro eruption is 4.2 × 1010 kg to 7.3 × 1010 kg, with 95% confidence. These results indicate that eruption classification and characterization of eruption parameters can be significantly improved through this uncertainty quantification approach.
Key Points
An efficient inversion and uncertainty quantification approach for eruption and wind field parameters is demonstrated for two eruption events
The worth of tephra grain size data to reduce eruption and wind field parameter uncertainty is quantified
Posterior eruption and wind field parameter uncertainty is shown to be eruption and tephra data set specific</description><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1002/2016JB013682</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Atmospheric circulation ; Classification ; Computer simulation ; Confidence ; data worth ; Datasets ; Deposition ; Dispersion ; Doppler effect ; Fallout ; Geophysics ; Grain size ; Granulometry ; Height ; inversion ; Inversions ; Mass ; Mathematical models ; Parameter estimation ; Parameter uncertainty ; Parameterization ; Parameters ; Parametrization ; Propagation ; Regularization ; Tephra ; tephra fallout ; Transport ; Uncertainty ; Uncertainty analysis ; volcanology ; Wind</subject><ispartof>Journal of geophysical research. Solid earth, 2017-01, Vol.122 (1), p.281-294</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4349-9959e2e9d58da67f9c1932cd9c2a5c69e8026a00db2c6a2e51325636a2d6a6543</citedby><cites>FETCH-LOGICAL-a4349-9959e2e9d58da67f9c1932cd9c2a5c69e8026a00db2c6a2e51325636a2d6a6543</cites><orcidid>0000-0002-4950-1469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016JB013682$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016JB013682$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27923,27924,45573,45574,46408,46832</link.rule.ids></links><search><creatorcontrib>White, J. T.</creatorcontrib><creatorcontrib>Connor, C. B.</creatorcontrib><creatorcontrib>Connor, L.</creatorcontrib><creatorcontrib>Hasenaka, T.</creatorcontrib><title>Efficient inversion and uncertainty quantification of a tephra fallout model</title><title>Journal of geophysical research. Solid earth</title><description>An efficient and effective inversion and uncertainty quantification approach is proposed for estimating eruption parameters given a data set collected from a tephra deposit. The approach is model independent and here is applied using Tephra2, a code that simulates advective and dispersive tephra transport and deposition. The Levenburg‐Marquardt algorithm is combined with formal Tikhonov and subspace regularization to invert eruption parameters; a linear equation for conditional uncertainty propagation is used to estimate posterior parameter uncertainty. Both the inversion and uncertainty analysis support simultaneous analysis of the full eruption and wind field parameterization. The combined inversion/uncertainty quantification approach is applied to the 1992 eruption of Cerro Negro and the 2011 Kirishima‐Shinmoedake eruption. While eruption mass uncertainty is reduced by inversion against tephra isomass data, considerable uncertainty remains for many eruption and wind field parameters, such as plume height. Supplementing the inversion data set with tephra granulometry data is shown to further reduce the uncertainty of most eruption and wind field parameters. The eruption mass of the 2011 Kirishima‐Shinmoedake eruption is 0.82 × 1010 kg to 2.6 × 1010 kg, with 95% confidence; total eruption mass for the 1992 Cerro Negro eruption is 4.2 × 1010 kg to 7.3 × 1010 kg, with 95% confidence. These results indicate that eruption classification and characterization of eruption parameters can be significantly improved through this uncertainty quantification approach.
Key Points
An efficient inversion and uncertainty quantification approach for eruption and wind field parameters is demonstrated for two eruption events
The worth of tephra grain size data to reduce eruption and wind field parameter uncertainty is quantified
Posterior eruption and wind field parameter uncertainty is shown to be eruption and tephra data set specific</description><subject>Algorithms</subject><subject>Atmospheric circulation</subject><subject>Classification</subject><subject>Computer simulation</subject><subject>Confidence</subject><subject>data worth</subject><subject>Datasets</subject><subject>Deposition</subject><subject>Dispersion</subject><subject>Doppler effect</subject><subject>Fallout</subject><subject>Geophysics</subject><subject>Grain size</subject><subject>Granulometry</subject><subject>Height</subject><subject>inversion</subject><subject>Inversions</subject><subject>Mass</subject><subject>Mathematical models</subject><subject>Parameter estimation</subject><subject>Parameter uncertainty</subject><subject>Parameterization</subject><subject>Parameters</subject><subject>Parametrization</subject><subject>Propagation</subject><subject>Regularization</subject><subject>Tephra</subject><subject>tephra fallout</subject><subject>Transport</subject><subject>Uncertainty</subject><subject>Uncertainty analysis</subject><subject>volcanology</subject><subject>Wind</subject><issn>2169-9313</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqN0cFKAzEQANBFFCy1Nz8g4MWD1UyyySZHW2q1FATRc4jZLKZskzbZVfr3plREPIi5ZCZ5hMxMUZwDvgaMyQ3BwBcTDJQLclQMCHA5lpTx4-8Y6GkxSmmF8xL5CMpBsZw1jTPO-g45_25jcsEj7WvUe2Njp53vdmjba9-57HS3vw4N0qizm7eoUaPbNvQdWofatmfFSc6THX3tw-LlbvY8vR8vH-cP09vlWJe0zD-RTFpiZc1ErXnVSAOSElNLQzQzXFqBCdcY16_EcE0sA0oYpzmsueaspMPi8vDuJoZtb1On1i4Z27ba29AnBUKUgCUn9B-0qgSthNzTi190FfrocyEKJEDuL4DI6uqgTAwpRduoTXRrHXcKsNoPQv0cROb0wD9ca3d_WrWYP01YboWkn-4Bh3M</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>White, J. T.</creator><creator>Connor, C. B.</creator><creator>Connor, L.</creator><creator>Hasenaka, T.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-4950-1469</orcidid></search><sort><creationdate>201701</creationdate><title>Efficient inversion and uncertainty quantification of a tephra fallout model</title><author>White, J. T. ; Connor, C. B. ; Connor, L. ; Hasenaka, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4349-9959e2e9d58da67f9c1932cd9c2a5c69e8026a00db2c6a2e51325636a2d6a6543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Atmospheric circulation</topic><topic>Classification</topic><topic>Computer simulation</topic><topic>Confidence</topic><topic>data worth</topic><topic>Datasets</topic><topic>Deposition</topic><topic>Dispersion</topic><topic>Doppler effect</topic><topic>Fallout</topic><topic>Geophysics</topic><topic>Grain size</topic><topic>Granulometry</topic><topic>Height</topic><topic>inversion</topic><topic>Inversions</topic><topic>Mass</topic><topic>Mathematical models</topic><topic>Parameter estimation</topic><topic>Parameter uncertainty</topic><topic>Parameterization</topic><topic>Parameters</topic><topic>Parametrization</topic><topic>Propagation</topic><topic>Regularization</topic><topic>Tephra</topic><topic>tephra fallout</topic><topic>Transport</topic><topic>Uncertainty</topic><topic>Uncertainty analysis</topic><topic>volcanology</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>White, J. T.</creatorcontrib><creatorcontrib>Connor, C. B.</creatorcontrib><creatorcontrib>Connor, L.</creatorcontrib><creatorcontrib>Hasenaka, T.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of geophysical research. Solid earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>White, J. T.</au><au>Connor, C. B.</au><au>Connor, L.</au><au>Hasenaka, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient inversion and uncertainty quantification of a tephra fallout model</atitle><jtitle>Journal of geophysical research. Solid earth</jtitle><date>2017-01</date><risdate>2017</risdate><volume>122</volume><issue>1</issue><spage>281</spage><epage>294</epage><pages>281-294</pages><issn>2169-9313</issn><eissn>2169-9356</eissn><abstract>An efficient and effective inversion and uncertainty quantification approach is proposed for estimating eruption parameters given a data set collected from a tephra deposit. The approach is model independent and here is applied using Tephra2, a code that simulates advective and dispersive tephra transport and deposition. The Levenburg‐Marquardt algorithm is combined with formal Tikhonov and subspace regularization to invert eruption parameters; a linear equation for conditional uncertainty propagation is used to estimate posterior parameter uncertainty. Both the inversion and uncertainty analysis support simultaneous analysis of the full eruption and wind field parameterization. The combined inversion/uncertainty quantification approach is applied to the 1992 eruption of Cerro Negro and the 2011 Kirishima‐Shinmoedake eruption. While eruption mass uncertainty is reduced by inversion against tephra isomass data, considerable uncertainty remains for many eruption and wind field parameters, such as plume height. Supplementing the inversion data set with tephra granulometry data is shown to further reduce the uncertainty of most eruption and wind field parameters. The eruption mass of the 2011 Kirishima‐Shinmoedake eruption is 0.82 × 1010 kg to 2.6 × 1010 kg, with 95% confidence; total eruption mass for the 1992 Cerro Negro eruption is 4.2 × 1010 kg to 7.3 × 1010 kg, with 95% confidence. These results indicate that eruption classification and characterization of eruption parameters can be significantly improved through this uncertainty quantification approach.
Key Points
An efficient inversion and uncertainty quantification approach for eruption and wind field parameters is demonstrated for two eruption events
The worth of tephra grain size data to reduce eruption and wind field parameter uncertainty is quantified
Posterior eruption and wind field parameter uncertainty is shown to be eruption and tephra data set specific</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2016JB013682</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4950-1469</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9313 |
ispartof | Journal of geophysical research. Solid earth, 2017-01, Vol.122 (1), p.281-294 |
issn | 2169-9313 2169-9356 |
language | eng |
recordid | cdi_proquest_miscellaneous_1884109623 |
source | Wiley Free Content; Wiley Online Library All Journals |
subjects | Algorithms Atmospheric circulation Classification Computer simulation Confidence data worth Datasets Deposition Dispersion Doppler effect Fallout Geophysics Grain size Granulometry Height inversion Inversions Mass Mathematical models Parameter estimation Parameter uncertainty Parameterization Parameters Parametrization Propagation Regularization Tephra tephra fallout Transport Uncertainty Uncertainty analysis volcanology Wind |
title | Efficient inversion and uncertainty quantification of a tephra fallout model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A22%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20inversion%20and%20uncertainty%20quantification%20of%20a%20tephra%20fallout%20model&rft.jtitle=Journal%20of%20geophysical%20research.%20Solid%20earth&rft.au=White,%20J.%20T.&rft.date=2017-01&rft.volume=122&rft.issue=1&rft.spage=281&rft.epage=294&rft.pages=281-294&rft.issn=2169-9313&rft.eissn=2169-9356&rft_id=info:doi/10.1002/2016JB013682&rft_dat=%3Cproquest_cross%3E1911201118%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1911201118&rft_id=info:pmid/&rfr_iscdi=true |