A Hot Spots Ignition Probability Model for Low-Velocity Impacted Explosive Particles Based on the Particle Size and Distribution

Particle size and distribution play an important role in ignition. The size and distribution of the cyclotetramethylene tetranitramine (HMX) particles were investigated by Laser Particle Size Analyzer Malvern MS2000 before experiment and calculation. The mean size of particles is 161 μm. Minimum and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2017-01, Vol.2017 (2017), p.1-10
Hauptverfasser: Guo, Hong-fu, Huang, Fenglei, Wu, Yan-qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 2017
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2017
creator Guo, Hong-fu
Huang, Fenglei
Wu, Yan-qing
description Particle size and distribution play an important role in ignition. The size and distribution of the cyclotetramethylene tetranitramine (HMX) particles were investigated by Laser Particle Size Analyzer Malvern MS2000 before experiment and calculation. The mean size of particles is 161 μm. Minimum and maximum sizes are 80 μm and 263 μm, respectively. The distribution function is like a quadratic function. Based on the distribution of micron scale explosive particles, a microscopic model is established to describe the process of ignition of HMX particles under drop weight. Both temperature of contact zones and ignition probability of powder explosive can be predicted. The calculated results show that the temperature of the contact zones between the particles and the drop weight surface increases faster and higher than that of the contact zones between two neighboring particles. For HMX particles, with all other conditions being kept constant, if the drop height is less than 0.1 m, ignition probability will be close to 0. When the drop heights are 0.2 m and 0.3 m, the ignition probability is 0.27 and 0.64, respectively, whereas when the drop height is more than 0.4 m, ignition probability will be close to 0.82. In comparison with experimental results, the two curves are reasonably close to each other, which indicates our model has a certain degree of rationality.
doi_str_mv 10.1155/2017/7421842
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884109073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884109073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-dac7cf436c0c7044da907ce118973a87921aa849f70eb92835bf9fec52980d253</originalsourceid><addsrcrecordid>eNqF0ctL7DAUBvAiV9Cr7lxLwM0FrebkMUmWvh0YUfCBu5KmqUY6TU0yvlb-6WYYQbgbVwknP74c-IpiE_AeAOf7BIPYF4yAZGSpWAU-oiUHJv7kOyasBELvV4q_MT5hTICDXC0-D9C5T-h68Cmi8UPvkvM9ugq-1rXrXHpHF76xHWp9QBP_Wt7Zzpv5eDwdtEm2QSdvQ-eje7HoSofkTGcjOtQxv-Sg9PgzRtfuwyLdN-jYxRRcPZv_tV4st7qLduP7XCtuT09ujs7LyeXZ-OhgUhrKcSobbYRpGR0ZbARmrNEKC2MBpBJUS6EIaC2ZagW2tSKS8rpVrTWcKIkbwula8W-ROwT_PLMxVVMXje063Vs_ixVIyQDnUJrp9n_0yc9Cn7fLaqSUZDk-q92FMsHHGGxbDcFNdXivAFfzOqp5HdV3HZnvLPij6xv96n7TWwtts7Gt_tGgQHJJvwCncZPF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1869984835</pqid></control><display><type>article</type><title>A Hot Spots Ignition Probability Model for Low-Velocity Impacted Explosive Particles Based on the Particle Size and Distribution</title><source>Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Guo, Hong-fu ; Huang, Fenglei ; Wu, Yan-qing</creator><contributor>Vynnycky, Michael</contributor><creatorcontrib>Guo, Hong-fu ; Huang, Fenglei ; Wu, Yan-qing ; Vynnycky, Michael</creatorcontrib><description>Particle size and distribution play an important role in ignition. The size and distribution of the cyclotetramethylene tetranitramine (HMX) particles were investigated by Laser Particle Size Analyzer Malvern MS2000 before experiment and calculation. The mean size of particles is 161 μm. Minimum and maximum sizes are 80 μm and 263 μm, respectively. The distribution function is like a quadratic function. Based on the distribution of micron scale explosive particles, a microscopic model is established to describe the process of ignition of HMX particles under drop weight. Both temperature of contact zones and ignition probability of powder explosive can be predicted. The calculated results show that the temperature of the contact zones between the particles and the drop weight surface increases faster and higher than that of the contact zones between two neighboring particles. For HMX particles, with all other conditions being kept constant, if the drop height is less than 0.1 m, ignition probability will be close to 0. When the drop heights are 0.2 m and 0.3 m, the ignition probability is 0.27 and 0.64, respectively, whereas when the drop height is more than 0.4 m, ignition probability will be close to 0.82. In comparison with experimental results, the two curves are reasonably close to each other, which indicates our model has a certain degree of rationality.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2017/7421842</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Analyzers ; Atoms &amp; subatomic particles ; Chemical reactions ; Constants ; Contact ; Distribution functions ; Experiments ; Explosives ; Heat ; HMX ; Ignition ; Kinematics ; Laboratories ; Lasers ; Mathematical models ; Neural networks ; Particle size ; Particle size distribution ; Phase transitions ; Photography ; Probability ; Propagation ; Quadratic equations ; R&amp;D ; Research &amp; development ; Velocity</subject><ispartof>Mathematical problems in engineering, 2017-01, Vol.2017 (2017), p.1-10</ispartof><rights>Copyright © 2017 Hong-fu Guo et al.</rights><rights>Copyright © 2017 Hong-fu Guo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c350t-dac7cf436c0c7044da907ce118973a87921aa849f70eb92835bf9fec52980d253</cites><orcidid>0000-0002-3763-2066 ; 0000-0002-6039-6436</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><contributor>Vynnycky, Michael</contributor><creatorcontrib>Guo, Hong-fu</creatorcontrib><creatorcontrib>Huang, Fenglei</creatorcontrib><creatorcontrib>Wu, Yan-qing</creatorcontrib><title>A Hot Spots Ignition Probability Model for Low-Velocity Impacted Explosive Particles Based on the Particle Size and Distribution</title><title>Mathematical problems in engineering</title><description>Particle size and distribution play an important role in ignition. The size and distribution of the cyclotetramethylene tetranitramine (HMX) particles were investigated by Laser Particle Size Analyzer Malvern MS2000 before experiment and calculation. The mean size of particles is 161 μm. Minimum and maximum sizes are 80 μm and 263 μm, respectively. The distribution function is like a quadratic function. Based on the distribution of micron scale explosive particles, a microscopic model is established to describe the process of ignition of HMX particles under drop weight. Both temperature of contact zones and ignition probability of powder explosive can be predicted. The calculated results show that the temperature of the contact zones between the particles and the drop weight surface increases faster and higher than that of the contact zones between two neighboring particles. For HMX particles, with all other conditions being kept constant, if the drop height is less than 0.1 m, ignition probability will be close to 0. When the drop heights are 0.2 m and 0.3 m, the ignition probability is 0.27 and 0.64, respectively, whereas when the drop height is more than 0.4 m, ignition probability will be close to 0.82. In comparison with experimental results, the two curves are reasonably close to each other, which indicates our model has a certain degree of rationality.</description><subject>Analyzers</subject><subject>Atoms &amp; subatomic particles</subject><subject>Chemical reactions</subject><subject>Constants</subject><subject>Contact</subject><subject>Distribution functions</subject><subject>Experiments</subject><subject>Explosives</subject><subject>Heat</subject><subject>HMX</subject><subject>Ignition</subject><subject>Kinematics</subject><subject>Laboratories</subject><subject>Lasers</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Particle size</subject><subject>Particle size distribution</subject><subject>Phase transitions</subject><subject>Photography</subject><subject>Probability</subject><subject>Propagation</subject><subject>Quadratic equations</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Velocity</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0ctL7DAUBvAiV9Cr7lxLwM0FrebkMUmWvh0YUfCBu5KmqUY6TU0yvlb-6WYYQbgbVwknP74c-IpiE_AeAOf7BIPYF4yAZGSpWAU-oiUHJv7kOyasBELvV4q_MT5hTICDXC0-D9C5T-h68Cmi8UPvkvM9ugq-1rXrXHpHF76xHWp9QBP_Wt7Zzpv5eDwdtEm2QSdvQ-eje7HoSofkTGcjOtQxv-Sg9PgzRtfuwyLdN-jYxRRcPZv_tV4st7qLduP7XCtuT09ujs7LyeXZ-OhgUhrKcSobbYRpGR0ZbARmrNEKC2MBpBJUS6EIaC2ZagW2tSKS8rpVrTWcKIkbwula8W-ROwT_PLMxVVMXje063Vs_ixVIyQDnUJrp9n_0yc9Cn7fLaqSUZDk-q92FMsHHGGxbDcFNdXivAFfzOqp5HdV3HZnvLPij6xv96n7TWwtts7Gt_tGgQHJJvwCncZPF</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Guo, Hong-fu</creator><creator>Huang, Fenglei</creator><creator>Wu, Yan-qing</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-3763-2066</orcidid><orcidid>https://orcid.org/0000-0002-6039-6436</orcidid></search><sort><creationdate>20170101</creationdate><title>A Hot Spots Ignition Probability Model for Low-Velocity Impacted Explosive Particles Based on the Particle Size and Distribution</title><author>Guo, Hong-fu ; Huang, Fenglei ; Wu, Yan-qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-dac7cf436c0c7044da907ce118973a87921aa849f70eb92835bf9fec52980d253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analyzers</topic><topic>Atoms &amp; subatomic particles</topic><topic>Chemical reactions</topic><topic>Constants</topic><topic>Contact</topic><topic>Distribution functions</topic><topic>Experiments</topic><topic>Explosives</topic><topic>Heat</topic><topic>HMX</topic><topic>Ignition</topic><topic>Kinematics</topic><topic>Laboratories</topic><topic>Lasers</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Particle size</topic><topic>Particle size distribution</topic><topic>Phase transitions</topic><topic>Photography</topic><topic>Probability</topic><topic>Propagation</topic><topic>Quadratic equations</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Hong-fu</creatorcontrib><creatorcontrib>Huang, Fenglei</creatorcontrib><creatorcontrib>Wu, Yan-qing</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Hong-fu</au><au>Huang, Fenglei</au><au>Wu, Yan-qing</au><au>Vynnycky, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hot Spots Ignition Probability Model for Low-Velocity Impacted Explosive Particles Based on the Particle Size and Distribution</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Particle size and distribution play an important role in ignition. The size and distribution of the cyclotetramethylene tetranitramine (HMX) particles were investigated by Laser Particle Size Analyzer Malvern MS2000 before experiment and calculation. The mean size of particles is 161 μm. Minimum and maximum sizes are 80 μm and 263 μm, respectively. The distribution function is like a quadratic function. Based on the distribution of micron scale explosive particles, a microscopic model is established to describe the process of ignition of HMX particles under drop weight. Both temperature of contact zones and ignition probability of powder explosive can be predicted. The calculated results show that the temperature of the contact zones between the particles and the drop weight surface increases faster and higher than that of the contact zones between two neighboring particles. For HMX particles, with all other conditions being kept constant, if the drop height is less than 0.1 m, ignition probability will be close to 0. When the drop heights are 0.2 m and 0.3 m, the ignition probability is 0.27 and 0.64, respectively, whereas when the drop height is more than 0.4 m, ignition probability will be close to 0.82. In comparison with experimental results, the two curves are reasonably close to each other, which indicates our model has a certain degree of rationality.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2017/7421842</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3763-2066</orcidid><orcidid>https://orcid.org/0000-0002-6039-6436</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2017-01, Vol.2017 (2017), p.1-10
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_miscellaneous_1884109073
source Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Analyzers
Atoms & subatomic particles
Chemical reactions
Constants
Contact
Distribution functions
Experiments
Explosives
Heat
HMX
Ignition
Kinematics
Laboratories
Lasers
Mathematical models
Neural networks
Particle size
Particle size distribution
Phase transitions
Photography
Probability
Propagation
Quadratic equations
R&D
Research & development
Velocity
title A Hot Spots Ignition Probability Model for Low-Velocity Impacted Explosive Particles Based on the Particle Size and Distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A05%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hot%20Spots%20Ignition%20Probability%20Model%20for%20Low-Velocity%20Impacted%20Explosive%20Particles%20Based%20on%20the%20Particle%20Size%20and%20Distribution&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Guo,%20Hong-fu&rft.date=2017-01-01&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2017/7421842&rft_dat=%3Cproquest_cross%3E1884109073%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1869984835&rft_id=info:pmid/&rfr_iscdi=true