Metal‐organic‐frameworks for biomedical applications in drug delivery, and as MRI contrast agents

The metal‐organic‐frameworks (MOFs) materials are increasingly gaining attraction to utilise into biomedical applications. MOFs are playing a major role to harnessing dual or multiple modalities in therapeutics and diagnostics. MOFs are mostly devised for particular biomedical application by post‐sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part A 2017-04, Vol.105 (4), p.1184-1194
1. Verfasser: Chowdhury, Mohammad A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1194
container_issue 4
container_start_page 1184
container_title Journal of biomedical materials research. Part A
container_volume 105
creator Chowdhury, Mohammad A.
description The metal‐organic‐frameworks (MOFs) materials are increasingly gaining attraction to utilise into biomedical applications. MOFs are playing a major role to harnessing dual or multiple modalities in therapeutics and diagnostics. MOFs are mostly devised for particular biomedical application by post‐synthetic functionalization or modification using variety of polymers, bio‐ligands, and silica coating processes. This article presents a brief overview of two particular areas of biomedical applications where a broad range of MOFs have been used: (1) variety of drug delivery including intracellular drug delivery systems using the MOFs‐based carriers; and, (2) development of MOFs‐based contrast agents for magnetic resonance image enhancement. Biocompatibility, bio‐toxicity, tissue responses, cell viability, cellular uptakes, and, how the effects of size, shape, structural, and morphological properties of the MOFs impact on the utilities in drug delivery and as MRI contrast agents, are discussed. Perspectives, insights and critical reflections into a range of aspects, and future outlook are illustrated. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1184–1194, 2017.
doi_str_mv 10.1002/jbm.a.35995
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884105673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884105673</sourcerecordid><originalsourceid>FETCH-LOGICAL-p3485-d382d51388cf012fe687ac922bef6186da253695c438034636774cd5433303a53</originalsourceid><addsrcrecordid>eNqNkUFv1DAQhS1URMvCiXtlqRcOZLE9tuMc2xWFoq6QEJyt2cRZeUniYCet9tafwG_sL2myLT1w4jRPmk8zeu8R8o6zJWdMfNxt2iUuQRWFekFOuFIik4VWR7OWRQai0MfkdUq7CdZMiVfkWBgGoBWcELd2Azb3d39C3GLny0nVEVt3G-KvROsQ6caH1lW-xIZi3zeTGHzoEvUdreK4pZVr_I2L-w8Uu4piouvvV7QM3RAxDRS3rhvSG_Kyxia5t09zQX5efvqx-pJdf_t8tTq_znqQRmUVGFEpDsaUNeOidtrkWBZCbFytudEVCgW6UKWEyYDUoPNclpWSAMAAFSzI-8e7fQy_R5cG2_pUuqbBzoUxWW6M5EzpHP4DzXPDNdMzevYPugtj7CYjMyVYLoWYf58-UeNmCsz20bcY9_Zv1hMgHoFb37j9854zO9dopxot2kON9uvF-vyg4AF3T4_V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1872074225</pqid></control><display><type>article</type><title>Metal‐organic‐frameworks for biomedical applications in drug delivery, and as MRI contrast agents</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chowdhury, Mohammad A.</creator><creatorcontrib>Chowdhury, Mohammad A.</creatorcontrib><description>The metal‐organic‐frameworks (MOFs) materials are increasingly gaining attraction to utilise into biomedical applications. MOFs are playing a major role to harnessing dual or multiple modalities in therapeutics and diagnostics. MOFs are mostly devised for particular biomedical application by post‐synthetic functionalization or modification using variety of polymers, bio‐ligands, and silica coating processes. This article presents a brief overview of two particular areas of biomedical applications where a broad range of MOFs have been used: (1) variety of drug delivery including intracellular drug delivery systems using the MOFs‐based carriers; and, (2) development of MOFs‐based contrast agents for magnetic resonance image enhancement. Biocompatibility, bio‐toxicity, tissue responses, cell viability, cellular uptakes, and, how the effects of size, shape, structural, and morphological properties of the MOFs impact on the utilities in drug delivery and as MRI contrast agents, are discussed. Perspectives, insights and critical reflections into a range of aspects, and future outlook are illustrated. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1184–1194, 2017.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.35995</identifier><identifier>PMID: 28033653</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Animals ; Biomedical materials ; Biomimetic Materials - chemistry ; Biomimetic Materials - therapeutic use ; bio‐toxicity ; Contrast agents ; Contrast Media - chemistry ; Contrast Media - therapeutic use ; Drug Carriers - chemistry ; Drug Carriers - therapeutic use ; drug delivery ; Drug delivery systems ; Humans ; Magnetic resonance ; Magnetic resonance imaging ; Metals - chemistry ; Metals - therapeutic use ; metal‐organic‐frameworks ; Reflection ; relaxivity ; Surgical implants ; Viability</subject><ispartof>Journal of biomedical materials research. Part A, 2017-04, Vol.105 (4), p.1184-1194</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.35995$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.35995$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28033653$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chowdhury, Mohammad A.</creatorcontrib><title>Metal‐organic‐frameworks for biomedical applications in drug delivery, and as MRI contrast agents</title><title>Journal of biomedical materials research. Part A</title><addtitle>J Biomed Mater Res A</addtitle><description>The metal‐organic‐frameworks (MOFs) materials are increasingly gaining attraction to utilise into biomedical applications. MOFs are playing a major role to harnessing dual or multiple modalities in therapeutics and diagnostics. MOFs are mostly devised for particular biomedical application by post‐synthetic functionalization or modification using variety of polymers, bio‐ligands, and silica coating processes. This article presents a brief overview of two particular areas of biomedical applications where a broad range of MOFs have been used: (1) variety of drug delivery including intracellular drug delivery systems using the MOFs‐based carriers; and, (2) development of MOFs‐based contrast agents for magnetic resonance image enhancement. Biocompatibility, bio‐toxicity, tissue responses, cell viability, cellular uptakes, and, how the effects of size, shape, structural, and morphological properties of the MOFs impact on the utilities in drug delivery and as MRI contrast agents, are discussed. Perspectives, insights and critical reflections into a range of aspects, and future outlook are illustrated. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1184–1194, 2017.</description><subject>Animals</subject><subject>Biomedical materials</subject><subject>Biomimetic Materials - chemistry</subject><subject>Biomimetic Materials - therapeutic use</subject><subject>bio‐toxicity</subject><subject>Contrast agents</subject><subject>Contrast Media - chemistry</subject><subject>Contrast Media - therapeutic use</subject><subject>Drug Carriers - chemistry</subject><subject>Drug Carriers - therapeutic use</subject><subject>drug delivery</subject><subject>Drug delivery systems</subject><subject>Humans</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Metals - chemistry</subject><subject>Metals - therapeutic use</subject><subject>metal‐organic‐frameworks</subject><subject>Reflection</subject><subject>relaxivity</subject><subject>Surgical implants</subject><subject>Viability</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUFv1DAQhS1URMvCiXtlqRcOZLE9tuMc2xWFoq6QEJyt2cRZeUniYCet9tafwG_sL2myLT1w4jRPmk8zeu8R8o6zJWdMfNxt2iUuQRWFekFOuFIik4VWR7OWRQai0MfkdUq7CdZMiVfkWBgGoBWcELd2Azb3d39C3GLny0nVEVt3G-KvROsQ6caH1lW-xIZi3zeTGHzoEvUdreK4pZVr_I2L-w8Uu4piouvvV7QM3RAxDRS3rhvSG_Kyxia5t09zQX5efvqx-pJdf_t8tTq_znqQRmUVGFEpDsaUNeOidtrkWBZCbFytudEVCgW6UKWEyYDUoPNclpWSAMAAFSzI-8e7fQy_R5cG2_pUuqbBzoUxWW6M5EzpHP4DzXPDNdMzevYPugtj7CYjMyVYLoWYf58-UeNmCsz20bcY9_Zv1hMgHoFb37j9854zO9dopxot2kON9uvF-vyg4AF3T4_V</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Chowdhury, Mohammad A.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>201704</creationdate><title>Metal‐organic‐frameworks for biomedical applications in drug delivery, and as MRI contrast agents</title><author>Chowdhury, Mohammad A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p3485-d382d51388cf012fe687ac922bef6186da253695c438034636774cd5433303a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Biomedical materials</topic><topic>Biomimetic Materials - chemistry</topic><topic>Biomimetic Materials - therapeutic use</topic><topic>bio‐toxicity</topic><topic>Contrast agents</topic><topic>Contrast Media - chemistry</topic><topic>Contrast Media - therapeutic use</topic><topic>Drug Carriers - chemistry</topic><topic>Drug Carriers - therapeutic use</topic><topic>drug delivery</topic><topic>Drug delivery systems</topic><topic>Humans</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Metals - chemistry</topic><topic>Metals - therapeutic use</topic><topic>metal‐organic‐frameworks</topic><topic>Reflection</topic><topic>relaxivity</topic><topic>Surgical implants</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chowdhury, Mohammad A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chowdhury, Mohammad A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal‐organic‐frameworks for biomedical applications in drug delivery, and as MRI contrast agents</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J Biomed Mater Res A</addtitle><date>2017-04</date><risdate>2017</risdate><volume>105</volume><issue>4</issue><spage>1184</spage><epage>1194</epage><pages>1184-1194</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>The metal‐organic‐frameworks (MOFs) materials are increasingly gaining attraction to utilise into biomedical applications. MOFs are playing a major role to harnessing dual or multiple modalities in therapeutics and diagnostics. MOFs are mostly devised for particular biomedical application by post‐synthetic functionalization or modification using variety of polymers, bio‐ligands, and silica coating processes. This article presents a brief overview of two particular areas of biomedical applications where a broad range of MOFs have been used: (1) variety of drug delivery including intracellular drug delivery systems using the MOFs‐based carriers; and, (2) development of MOFs‐based contrast agents for magnetic resonance image enhancement. Biocompatibility, bio‐toxicity, tissue responses, cell viability, cellular uptakes, and, how the effects of size, shape, structural, and morphological properties of the MOFs impact on the utilities in drug delivery and as MRI contrast agents, are discussed. Perspectives, insights and critical reflections into a range of aspects, and future outlook are illustrated. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1184–1194, 2017.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28033653</pmid><doi>10.1002/jbm.a.35995</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of biomedical materials research. Part A, 2017-04, Vol.105 (4), p.1184-1194
issn 1549-3296
1552-4965
language eng
recordid cdi_proquest_miscellaneous_1884105673
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Biomedical materials
Biomimetic Materials - chemistry
Biomimetic Materials - therapeutic use
bio‐toxicity
Contrast agents
Contrast Media - chemistry
Contrast Media - therapeutic use
Drug Carriers - chemistry
Drug Carriers - therapeutic use
drug delivery
Drug delivery systems
Humans
Magnetic resonance
Magnetic resonance imaging
Metals - chemistry
Metals - therapeutic use
metal‐organic‐frameworks
Reflection
relaxivity
Surgical implants
Viability
title Metal‐organic‐frameworks for biomedical applications in drug delivery, and as MRI contrast agents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T16%3A11%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal%E2%80%90organic%E2%80%90frameworks%20for%20biomedical%20applications%20in%20drug%20delivery,%20and%20as%20MRI%20contrast%20agents&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Chowdhury,%20Mohammad%20A.&rft.date=2017-04&rft.volume=105&rft.issue=4&rft.spage=1184&rft.epage=1194&rft.pages=1184-1194&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.35995&rft_dat=%3Cproquest_pubme%3E1884105673%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1872074225&rft_id=info:pmid/28033653&rfr_iscdi=true