Enhanced light harvesting through Förster resonance energy transfer in polymer–small molecule ternary system

We report a conceptually new approach for preparing a ternary blend of polymer/small molecule/metal oxide using plasma nanotechnology and realized it in the fabrication of a high-performance self-powered broadband photodetector. Here, we demonstrate the Förster resonance energy transfer (FRET) effec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2017, Vol.5 (5), p.1136-1148
Hauptverfasser: Hussain, Amreen A., Pal, Arup R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1148
container_issue 5
container_start_page 1136
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 5
creator Hussain, Amreen A.
Pal, Arup R.
description We report a conceptually new approach for preparing a ternary blend of polymer/small molecule/metal oxide using plasma nanotechnology and realized it in the fabrication of a high-performance self-powered broadband photodetector. Here, we demonstrate the Förster resonance energy transfer (FRET) effect in a polymer–small molecule system with the incorporation of rubrene, a small molecule. The high absorption of rubrene in the visible region expands the spectral absorption and assists in developing nano-morphology for enhanced charge transport. The polymer absorbs in the UV region and non-radiatively transfers the absorbed energy to rubrene by FRET effect. The time-resolved photoluminescence study reveals efficient excitation energy transfer from the polymer to the small molecule occurring on a nanosecond timescale, thereby confirming the occurrence of FRET. We also demonstrate the synergistic effect of FRET and energy cascade dominated mechanisms when used in the ternary structure (polymer/small molecule/metal oxide) to realize high-performance broadband self-powered photodetector with a very low dark current of 32 pA cm −2 and a high photoconductive gain of 24.34 at zero bias. Conclusively, this configuration has the potential to be directly utilized in traditional multiple donor/acceptor systems with separate spectral responses to work synergistically, thereby allowing an enhancement in both light absorption and photocurrent generation.
doi_str_mv 10.1039/C6TC04667C
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884105138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884105138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-4881d4b56268fd1e0e8fe3b3e0e17350c42f536a7143399360fadb038f7e0f793</originalsourceid><addsrcrecordid>eNpFkMFKxDAQhoMouKx78QlyFKGaNGmaHqXsqrDgZT2XbDtpK2myJl2hN9_Bd_EFfBOfxCwrOpf5Yb75mfkRuqTkhhJW3JZiUxIuRF6eoFlKMpLkGeOnfzoV52gRwguJJamQopght7SdsjU02PRtN-JO-TcIY29bPHbe7dsOr74-fRjBYw_B2QOMwYJvJzx6ZYOOk97inTPTAP77_SMMyhg8OAP13gCOm1b5CYcpmgwX6EwrE2Dx2-foebXclA_J-un-sbxbJ3Uq-JhwKWnDt5lIhdQNBQJSA9uyKGjOMlLzVGdMqJxyxoqCCaJVsyVM6hyIzgs2R1dH3513r_v4UTX0oQZjlAW3DxWVklOSUSYjen1Ea-9C8KCrne-HeHJFSXUItvoPlv0AqVJuRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884105138</pqid></control><display><type>article</type><title>Enhanced light harvesting through Förster resonance energy transfer in polymer–small molecule ternary system</title><source>Royal Society Of Chemistry Journals</source><creator>Hussain, Amreen A. ; Pal, Arup R.</creator><creatorcontrib>Hussain, Amreen A. ; Pal, Arup R.</creatorcontrib><description>We report a conceptually new approach for preparing a ternary blend of polymer/small molecule/metal oxide using plasma nanotechnology and realized it in the fabrication of a high-performance self-powered broadband photodetector. Here, we demonstrate the Förster resonance energy transfer (FRET) effect in a polymer–small molecule system with the incorporation of rubrene, a small molecule. The high absorption of rubrene in the visible region expands the spectral absorption and assists in developing nano-morphology for enhanced charge transport. The polymer absorbs in the UV region and non-radiatively transfers the absorbed energy to rubrene by FRET effect. The time-resolved photoluminescence study reveals efficient excitation energy transfer from the polymer to the small molecule occurring on a nanosecond timescale, thereby confirming the occurrence of FRET. We also demonstrate the synergistic effect of FRET and energy cascade dominated mechanisms when used in the ternary structure (polymer/small molecule/metal oxide) to realize high-performance broadband self-powered photodetector with a very low dark current of 32 pA cm −2 and a high photoconductive gain of 24.34 at zero bias. Conclusively, this configuration has the potential to be directly utilized in traditional multiple donor/acceptor systems with separate spectral responses to work synergistically, thereby allowing an enhancement in both light absorption and photocurrent generation.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/C6TC04667C</identifier><language>eng</language><subject>Broadband ; Cascades ; Energy transfer ; Fretting ; Magnetic resonance ; Metal oxides ; Nanostructure ; Photodetectors</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2017, Vol.5 (5), p.1136-1148</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-4881d4b56268fd1e0e8fe3b3e0e17350c42f536a7143399360fadb038f7e0f793</citedby><cites>FETCH-LOGICAL-c264t-4881d4b56268fd1e0e8fe3b3e0e17350c42f536a7143399360fadb038f7e0f793</cites><orcidid>0000-0003-3893-1305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Hussain, Amreen A.</creatorcontrib><creatorcontrib>Pal, Arup R.</creatorcontrib><title>Enhanced light harvesting through Förster resonance energy transfer in polymer–small molecule ternary system</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>We report a conceptually new approach for preparing a ternary blend of polymer/small molecule/metal oxide using plasma nanotechnology and realized it in the fabrication of a high-performance self-powered broadband photodetector. Here, we demonstrate the Förster resonance energy transfer (FRET) effect in a polymer–small molecule system with the incorporation of rubrene, a small molecule. The high absorption of rubrene in the visible region expands the spectral absorption and assists in developing nano-morphology for enhanced charge transport. The polymer absorbs in the UV region and non-radiatively transfers the absorbed energy to rubrene by FRET effect. The time-resolved photoluminescence study reveals efficient excitation energy transfer from the polymer to the small molecule occurring on a nanosecond timescale, thereby confirming the occurrence of FRET. We also demonstrate the synergistic effect of FRET and energy cascade dominated mechanisms when used in the ternary structure (polymer/small molecule/metal oxide) to realize high-performance broadband self-powered photodetector with a very low dark current of 32 pA cm −2 and a high photoconductive gain of 24.34 at zero bias. Conclusively, this configuration has the potential to be directly utilized in traditional multiple donor/acceptor systems with separate spectral responses to work synergistically, thereby allowing an enhancement in both light absorption and photocurrent generation.</description><subject>Broadband</subject><subject>Cascades</subject><subject>Energy transfer</subject><subject>Fretting</subject><subject>Magnetic resonance</subject><subject>Metal oxides</subject><subject>Nanostructure</subject><subject>Photodetectors</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpFkMFKxDAQhoMouKx78QlyFKGaNGmaHqXsqrDgZT2XbDtpK2myJl2hN9_Bd_EFfBOfxCwrOpf5Yb75mfkRuqTkhhJW3JZiUxIuRF6eoFlKMpLkGeOnfzoV52gRwguJJamQopght7SdsjU02PRtN-JO-TcIY29bPHbe7dsOr74-fRjBYw_B2QOMwYJvJzx6ZYOOk97inTPTAP77_SMMyhg8OAP13gCOm1b5CYcpmgwX6EwrE2Dx2-foebXclA_J-un-sbxbJ3Uq-JhwKWnDt5lIhdQNBQJSA9uyKGjOMlLzVGdMqJxyxoqCCaJVsyVM6hyIzgs2R1dH3513r_v4UTX0oQZjlAW3DxWVklOSUSYjen1Ea-9C8KCrne-HeHJFSXUItvoPlv0AqVJuRg</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Hussain, Amreen A.</creator><creator>Pal, Arup R.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3893-1305</orcidid></search><sort><creationdate>2017</creationdate><title>Enhanced light harvesting through Förster resonance energy transfer in polymer–small molecule ternary system</title><author>Hussain, Amreen A. ; Pal, Arup R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-4881d4b56268fd1e0e8fe3b3e0e17350c42f536a7143399360fadb038f7e0f793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Broadband</topic><topic>Cascades</topic><topic>Energy transfer</topic><topic>Fretting</topic><topic>Magnetic resonance</topic><topic>Metal oxides</topic><topic>Nanostructure</topic><topic>Photodetectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hussain, Amreen A.</creatorcontrib><creatorcontrib>Pal, Arup R.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hussain, Amreen A.</au><au>Pal, Arup R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced light harvesting through Förster resonance energy transfer in polymer–small molecule ternary system</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2017</date><risdate>2017</risdate><volume>5</volume><issue>5</issue><spage>1136</spage><epage>1148</epage><pages>1136-1148</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>We report a conceptually new approach for preparing a ternary blend of polymer/small molecule/metal oxide using plasma nanotechnology and realized it in the fabrication of a high-performance self-powered broadband photodetector. Here, we demonstrate the Förster resonance energy transfer (FRET) effect in a polymer–small molecule system with the incorporation of rubrene, a small molecule. The high absorption of rubrene in the visible region expands the spectral absorption and assists in developing nano-morphology for enhanced charge transport. The polymer absorbs in the UV region and non-radiatively transfers the absorbed energy to rubrene by FRET effect. The time-resolved photoluminescence study reveals efficient excitation energy transfer from the polymer to the small molecule occurring on a nanosecond timescale, thereby confirming the occurrence of FRET. We also demonstrate the synergistic effect of FRET and energy cascade dominated mechanisms when used in the ternary structure (polymer/small molecule/metal oxide) to realize high-performance broadband self-powered photodetector with a very low dark current of 32 pA cm −2 and a high photoconductive gain of 24.34 at zero bias. Conclusively, this configuration has the potential to be directly utilized in traditional multiple donor/acceptor systems with separate spectral responses to work synergistically, thereby allowing an enhancement in both light absorption and photocurrent generation.</abstract><doi>10.1039/C6TC04667C</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3893-1305</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2017, Vol.5 (5), p.1136-1148
issn 2050-7526
2050-7534
language eng
recordid cdi_proquest_miscellaneous_1884105138
source Royal Society Of Chemistry Journals
subjects Broadband
Cascades
Energy transfer
Fretting
Magnetic resonance
Metal oxides
Nanostructure
Photodetectors
title Enhanced light harvesting through Förster resonance energy transfer in polymer–small molecule ternary system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A12%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20light%20harvesting%20through%20F%C3%B6rster%20resonance%20energy%20transfer%20in%20polymer%E2%80%93small%20molecule%20ternary%20system&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Hussain,%20Amreen%20A.&rft.date=2017&rft.volume=5&rft.issue=5&rft.spage=1136&rft.epage=1148&rft.pages=1136-1148&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/C6TC04667C&rft_dat=%3Cproquest_cross%3E1884105138%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884105138&rft_id=info:pmid/&rfr_iscdi=true