No Strain, No Gain? Enzymatic Ring‐Opening Polymerization of Strainless Aliphatic Macrolactones
Starting from readily available oleic and erucic acid, macrocyclic nonadecalactone (C19) and tricosalactone (C23) can be synthesized in polymerization grade purity in a four‐step reaction sequence. Ring‐opening polymerization (ROP) of these strainless macrolactones can be performed utilizing an enzy...
Gespeichert in:
Veröffentlicht in: | Macromolecular rapid communications. 2017-02, Vol.38 (4), p.np-n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | np |
container_title | Macromolecular rapid communications. |
container_volume | 38 |
creator | Witt, Timo Häußler, Manuel Mecking, Stefan |
description | Starting from readily available oleic and erucic acid, macrocyclic nonadecalactone (C19) and tricosalactone (C23) can be synthesized in polymerization grade purity in a four‐step reaction sequence. Ring‐opening polymerization (ROP) of these strainless macrolactones can be performed utilizing an enzyme as a catalyst. Despite the missing ring‐strain as key driving force for smaller (strained) lactones, high molar masses (Mn ≈ 105 g mol−1) can be accessed in an entropically driven ROP. Polyester‐19 and polyester‐23 prepared feature melting temperatures well above 100 °C. Further analysis of the mechanical properties of these materials displays the resemblance to polyethylene. For example, Young's moduli on the order of 600 MPa are observed as a result of the high crystallinity of the polymer.
Macrolactones containing a C19 and C23 hydrocarbon segment can be accessed from plant oils in a four‐step reaction sequence. Enzymatic entropy‐driven ring‐opening polymerization of these strainless macrolactones yields high‐molar‐mass polyesters. Furthermore, investigation of the mechanical properties is presented, showing similarities to polyethylene. |
doi_str_mv | 10.1002/marc.201600638 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884102817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1855064963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4438-8657ef1d99d83b47a712eec7e959b83a713a0fb676455e62919b73ffd87143bb3</originalsourceid><addsrcrecordid>eNqNkbtOwzAYhS0EoqWwMqJILAyk-JL4MqGqKgWppajAHDmJA6mSOMSNUDrxCDwjT4JDS5FYYPKx_J2j__cB4BjBPoIQX-SyivoYIgohJXwHdJGPkUsEZrtWQ4xdRAjtgANjFhBC7kG8DzqYQ88jHHaBvNXO_bKSaXHuWDm24tIZFasml8s0cuZp8fTx9j4rVWGVc6ezJldVurKPunB0svFmyhhnkKXl85drKqNKZzJa6kKZQ7CXyMyoo83ZA49Xo4fhtTuZjW-Gg4kbtaO4nPpMJSgWIuYk9JhkCCsVMSV8EXJir0TCJKSMer6vKBZIhIwkScwZ8kgYkh44W-eWlX6plVkGeWoilWWyULo2AeLcsx_CEfsH6vuQeoISi57-Qhe6rgq7iKWo5RgVbWB_Tdm9jalUEpRVaqtpAgSDtqeg7SnY9mQNJ5vYOsxVvMW_i7GAWAOvaaaaP-KC6WA-_An_BGbMnps</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1868557697</pqid></control><display><type>article</type><title>No Strain, No Gain? Enzymatic Ring‐Opening Polymerization of Strainless Aliphatic Macrolactones</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Witt, Timo ; Häußler, Manuel ; Mecking, Stefan</creator><creatorcontrib>Witt, Timo ; Häußler, Manuel ; Mecking, Stefan</creatorcontrib><description>Starting from readily available oleic and erucic acid, macrocyclic nonadecalactone (C19) and tricosalactone (C23) can be synthesized in polymerization grade purity in a four‐step reaction sequence. Ring‐opening polymerization (ROP) of these strainless macrolactones can be performed utilizing an enzyme as a catalyst. Despite the missing ring‐strain as key driving force for smaller (strained) lactones, high molar masses (Mn ≈ 105 g mol−1) can be accessed in an entropically driven ROP. Polyester‐19 and polyester‐23 prepared feature melting temperatures well above 100 °C. Further analysis of the mechanical properties of these materials displays the resemblance to polyethylene. For example, Young's moduli on the order of 600 MPa are observed as a result of the high crystallinity of the polymer.
Macrolactones containing a C19 and C23 hydrocarbon segment can be accessed from plant oils in a four‐step reaction sequence. Enzymatic entropy‐driven ring‐opening polymerization of these strainless macrolactones yields high‐molar‐mass polyesters. Furthermore, investigation of the mechanical properties is presented, showing similarities to polyethylene.</description><identifier>ISSN: 1022-1336</identifier><identifier>EISSN: 1521-3927</identifier><identifier>DOI: 10.1002/marc.201600638</identifier><identifier>PMID: 28044380</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aliphatic compounds ; aliphatic polymacrolactones ; all‐aliphatic polyester material properties ; Candida antarctica lipase B ; Catalysts ; enzymatic ring‐opening polymerization ; Enzymes ; Fungal Proteins - chemistry ; Fungal Proteins - metabolism ; Lactones - chemistry ; Lactones - metabolism ; Lipase - chemistry ; Lipase - metabolism ; macrocyclic monolides ; Mechanical properties ; Molecular Structure ; Polyester resins ; Polyesters - chemistry ; Polyesters - metabolism ; Polyethylenes ; Polymerization ; Synthesis (chemistry)</subject><ispartof>Macromolecular rapid communications., 2017-02, Vol.38 (4), p.np-n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4438-8657ef1d99d83b47a712eec7e959b83a713a0fb676455e62919b73ffd87143bb3</citedby><cites>FETCH-LOGICAL-c4438-8657ef1d99d83b47a712eec7e959b83a713a0fb676455e62919b73ffd87143bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmarc.201600638$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmarc.201600638$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28044380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Witt, Timo</creatorcontrib><creatorcontrib>Häußler, Manuel</creatorcontrib><creatorcontrib>Mecking, Stefan</creatorcontrib><title>No Strain, No Gain? Enzymatic Ring‐Opening Polymerization of Strainless Aliphatic Macrolactones</title><title>Macromolecular rapid communications.</title><addtitle>Macromol Rapid Commun</addtitle><description>Starting from readily available oleic and erucic acid, macrocyclic nonadecalactone (C19) and tricosalactone (C23) can be synthesized in polymerization grade purity in a four‐step reaction sequence. Ring‐opening polymerization (ROP) of these strainless macrolactones can be performed utilizing an enzyme as a catalyst. Despite the missing ring‐strain as key driving force for smaller (strained) lactones, high molar masses (Mn ≈ 105 g mol−1) can be accessed in an entropically driven ROP. Polyester‐19 and polyester‐23 prepared feature melting temperatures well above 100 °C. Further analysis of the mechanical properties of these materials displays the resemblance to polyethylene. For example, Young's moduli on the order of 600 MPa are observed as a result of the high crystallinity of the polymer.
Macrolactones containing a C19 and C23 hydrocarbon segment can be accessed from plant oils in a four‐step reaction sequence. Enzymatic entropy‐driven ring‐opening polymerization of these strainless macrolactones yields high‐molar‐mass polyesters. Furthermore, investigation of the mechanical properties is presented, showing similarities to polyethylene.</description><subject>Aliphatic compounds</subject><subject>aliphatic polymacrolactones</subject><subject>all‐aliphatic polyester material properties</subject><subject>Candida antarctica lipase B</subject><subject>Catalysts</subject><subject>enzymatic ring‐opening polymerization</subject><subject>Enzymes</subject><subject>Fungal Proteins - chemistry</subject><subject>Fungal Proteins - metabolism</subject><subject>Lactones - chemistry</subject><subject>Lactones - metabolism</subject><subject>Lipase - chemistry</subject><subject>Lipase - metabolism</subject><subject>macrocyclic monolides</subject><subject>Mechanical properties</subject><subject>Molecular Structure</subject><subject>Polyester resins</subject><subject>Polyesters - chemistry</subject><subject>Polyesters - metabolism</subject><subject>Polyethylenes</subject><subject>Polymerization</subject><subject>Synthesis (chemistry)</subject><issn>1022-1336</issn><issn>1521-3927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkbtOwzAYhS0EoqWwMqJILAyk-JL4MqGqKgWppajAHDmJA6mSOMSNUDrxCDwjT4JDS5FYYPKx_J2j__cB4BjBPoIQX-SyivoYIgohJXwHdJGPkUsEZrtWQ4xdRAjtgANjFhBC7kG8DzqYQ88jHHaBvNXO_bKSaXHuWDm24tIZFasml8s0cuZp8fTx9j4rVWGVc6ezJldVurKPunB0svFmyhhnkKXl85drKqNKZzJa6kKZQ7CXyMyoo83ZA49Xo4fhtTuZjW-Gg4kbtaO4nPpMJSgWIuYk9JhkCCsVMSV8EXJir0TCJKSMer6vKBZIhIwkScwZ8kgYkh44W-eWlX6plVkGeWoilWWyULo2AeLcsx_CEfsH6vuQeoISi57-Qhe6rgq7iKWo5RgVbWB_Tdm9jalUEpRVaqtpAgSDtqeg7SnY9mQNJ5vYOsxVvMW_i7GAWAOvaaaaP-KC6WA-_An_BGbMnps</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Witt, Timo</creator><creator>Häußler, Manuel</creator><creator>Mecking, Stefan</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>201702</creationdate><title>No Strain, No Gain? Enzymatic Ring‐Opening Polymerization of Strainless Aliphatic Macrolactones</title><author>Witt, Timo ; Häußler, Manuel ; Mecking, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4438-8657ef1d99d83b47a712eec7e959b83a713a0fb676455e62919b73ffd87143bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aliphatic compounds</topic><topic>aliphatic polymacrolactones</topic><topic>all‐aliphatic polyester material properties</topic><topic>Candida antarctica lipase B</topic><topic>Catalysts</topic><topic>enzymatic ring‐opening polymerization</topic><topic>Enzymes</topic><topic>Fungal Proteins - chemistry</topic><topic>Fungal Proteins - metabolism</topic><topic>Lactones - chemistry</topic><topic>Lactones - metabolism</topic><topic>Lipase - chemistry</topic><topic>Lipase - metabolism</topic><topic>macrocyclic monolides</topic><topic>Mechanical properties</topic><topic>Molecular Structure</topic><topic>Polyester resins</topic><topic>Polyesters - chemistry</topic><topic>Polyesters - metabolism</topic><topic>Polyethylenes</topic><topic>Polymerization</topic><topic>Synthesis (chemistry)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Witt, Timo</creatorcontrib><creatorcontrib>Häußler, Manuel</creatorcontrib><creatorcontrib>Mecking, Stefan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Macromolecular rapid communications.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Witt, Timo</au><au>Häußler, Manuel</au><au>Mecking, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>No Strain, No Gain? Enzymatic Ring‐Opening Polymerization of Strainless Aliphatic Macrolactones</atitle><jtitle>Macromolecular rapid communications.</jtitle><addtitle>Macromol Rapid Commun</addtitle><date>2017-02</date><risdate>2017</risdate><volume>38</volume><issue>4</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>1022-1336</issn><eissn>1521-3927</eissn><abstract>Starting from readily available oleic and erucic acid, macrocyclic nonadecalactone (C19) and tricosalactone (C23) can be synthesized in polymerization grade purity in a four‐step reaction sequence. Ring‐opening polymerization (ROP) of these strainless macrolactones can be performed utilizing an enzyme as a catalyst. Despite the missing ring‐strain as key driving force for smaller (strained) lactones, high molar masses (Mn ≈ 105 g mol−1) can be accessed in an entropically driven ROP. Polyester‐19 and polyester‐23 prepared feature melting temperatures well above 100 °C. Further analysis of the mechanical properties of these materials displays the resemblance to polyethylene. For example, Young's moduli on the order of 600 MPa are observed as a result of the high crystallinity of the polymer.
Macrolactones containing a C19 and C23 hydrocarbon segment can be accessed from plant oils in a four‐step reaction sequence. Enzymatic entropy‐driven ring‐opening polymerization of these strainless macrolactones yields high‐molar‐mass polyesters. Furthermore, investigation of the mechanical properties is presented, showing similarities to polyethylene.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28044380</pmid><doi>10.1002/marc.201600638</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-1336 |
ispartof | Macromolecular rapid communications., 2017-02, Vol.38 (4), p.np-n/a |
issn | 1022-1336 1521-3927 |
language | eng |
recordid | cdi_proquest_miscellaneous_1884102817 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Aliphatic compounds aliphatic polymacrolactones all‐aliphatic polyester material properties Candida antarctica lipase B Catalysts enzymatic ring‐opening polymerization Enzymes Fungal Proteins - chemistry Fungal Proteins - metabolism Lactones - chemistry Lactones - metabolism Lipase - chemistry Lipase - metabolism macrocyclic monolides Mechanical properties Molecular Structure Polyester resins Polyesters - chemistry Polyesters - metabolism Polyethylenes Polymerization Synthesis (chemistry) |
title | No Strain, No Gain? Enzymatic Ring‐Opening Polymerization of Strainless Aliphatic Macrolactones |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A59%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=No%20Strain,%20No%20Gain?%20Enzymatic%20Ring%E2%80%90Opening%20Polymerization%20of%20Strainless%20Aliphatic%20Macrolactones&rft.jtitle=Macromolecular%20rapid%20communications.&rft.au=Witt,%20Timo&rft.date=2017-02&rft.volume=38&rft.issue=4&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=1022-1336&rft.eissn=1521-3927&rft_id=info:doi/10.1002/marc.201600638&rft_dat=%3Cproquest_cross%3E1855064963%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1868557697&rft_id=info:pmid/28044380&rfr_iscdi=true |