Computational and Mathematical Model with Phase Change and Metal Addition Applied to GMAW
This work presents a 3D computational/mathematical model to solve the heat diffusion equation with phase change, considering metal addition, complex geometry, and thermal properties varying with temperature. The finite volume method was used and the computational code was implemented in C++, using a...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2017-01, Vol.2017 (2017), p.1-8 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 2017 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2017 |
creator | Borges, Valério Luiz Alves Figueira Júnior, Edson Gonçalves de Souza, Marcelo dos Santos Maia Neto, Alfredo Carvalho, Solidônio Rodrigues de |
description | This work presents a 3D computational/mathematical model to solve the heat diffusion equation with phase change, considering metal addition, complex geometry, and thermal properties varying with temperature. The finite volume method was used and the computational code was implemented in C++, using a Borland compiler. Experimental tests considering workpieces of stainless steel AISI 304 were carried out for validation of the thermal model. Inverse techniques based on Golden Section method were used to estimate the heat transfer rate to the workpieces. Experimental temperatures were measured using thermocouples type J—in a total of 07 (seven)—all connected to the welded workpiece and the Agilent 34970A data logger. The workpieces were chamfered in a 45° V-groove in which liquid metal was added on only one weld pass. An innovation presented in this work when compared to other works in scientific literature was the geometry of the weld pool. The good relation between experimental and simulated data confirmed the quality and robustness of the thermal model proposed in this work. |
doi_str_mv | 10.1155/2017/3682456 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884100965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4306422251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-8a906850b70f2dced717c92387f5391838a7ed186540b235317d1474b71cfcc73</originalsourceid><addsrcrecordid>eNqF0U1LxDAQBuAiCq6rN88S8CJo3UzTNOmxFF2FXfSgqKeSTVKbpV82LYv_3pQuCF48zTA8GZg3nncO-BaA0kWAgS1IxIOQRgfeDGhEfAohO3Q9DkIfAvJ-7J1Yu8U4AAp85n2kTdUOvehNU4sSiVqhtegLXbmJdIN1o3SJdqYv0HMhrEZpIepPPUHdO5EoZcbXKGnb0miF-gYt18nbqXeUi9Lqs32de6_3dy_pg796Wj6mycqXJCa9z0WMI07xhuE8UFIrBkzGAeEspyQGTrhgWgGPaIg3AaEEmHInhRsGMpeSkbl3Ne1tu-Zr0LbPKmOlLktR62awGXAeAsZxRB29_EO3zdC5u0cVYZcbZqO6mZTsGms7nWdtZyrRfWeAszHnbMw52-fs-PXEC1MrsTP_6YtJu4TdavGrIXZfFJIf5MaD3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1860824075</pqid></control><display><type>article</type><title>Computational and Mathematical Model with Phase Change and Metal Addition Applied to GMAW</title><source>Wiley Online Library Open Access</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Alma/SFX Local Collection</source><creator>Borges, Valério Luiz ; Alves Figueira Júnior, Edson ; Gonçalves de Souza, Marcelo ; dos Santos Maia Neto, Alfredo ; Carvalho, Solidônio Rodrigues de</creator><contributor>Nouari, Mohammed</contributor><creatorcontrib>Borges, Valério Luiz ; Alves Figueira Júnior, Edson ; Gonçalves de Souza, Marcelo ; dos Santos Maia Neto, Alfredo ; Carvalho, Solidônio Rodrigues de ; Nouari, Mohammed</creatorcontrib><description>This work presents a 3D computational/mathematical model to solve the heat diffusion equation with phase change, considering metal addition, complex geometry, and thermal properties varying with temperature. The finite volume method was used and the computational code was implemented in C++, using a Borland compiler. Experimental tests considering workpieces of stainless steel AISI 304 were carried out for validation of the thermal model. Inverse techniques based on Golden Section method were used to estimate the heat transfer rate to the workpieces. Experimental temperatures were measured using thermocouples type J—in a total of 07 (seven)—all connected to the welded workpiece and the Agilent 34970A data logger. The workpieces were chamfered in a 45° V-groove in which liquid metal was added on only one weld pass. An innovation presented in this work when compared to other works in scientific literature was the geometry of the weld pool. The good relation between experimental and simulated data confirmed the quality and robustness of the thermal model proposed in this work.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2017/3682456</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Alloys ; Austenitic stainless steels ; Chamfering ; Colleges & universities ; Computation ; Diffusion rate ; Electrodes ; Finite volume method ; Gas metal arc welding ; Geometry ; Heat conductivity ; Heat transfer ; Inverse problems ; Liquid metals ; Mathematical models ; Mathematical problems ; Optimization techniques ; Phase change ; Phase transitions ; Software ; Stainless steel ; Stainless steels ; Temperature ; Thermal analysis ; Thermal properties ; Thermocouples ; Thermodynamic properties ; Weld metal pool ; Workpieces</subject><ispartof>Mathematical problems in engineering, 2017-01, Vol.2017 (2017), p.1-8</ispartof><rights>Copyright © 2017 Alfredo dos Santos Maia Neto et al.</rights><rights>Copyright © 2017 Alfredo dos Santos Maia Neto et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-8a906850b70f2dced717c92387f5391838a7ed186540b235317d1474b71cfcc73</citedby><cites>FETCH-LOGICAL-c393t-8a906850b70f2dced717c92387f5391838a7ed186540b235317d1474b71cfcc73</cites><orcidid>0000-0002-9040-8661 ; 0000-0002-3290-2418</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Nouari, Mohammed</contributor><creatorcontrib>Borges, Valério Luiz</creatorcontrib><creatorcontrib>Alves Figueira Júnior, Edson</creatorcontrib><creatorcontrib>Gonçalves de Souza, Marcelo</creatorcontrib><creatorcontrib>dos Santos Maia Neto, Alfredo</creatorcontrib><creatorcontrib>Carvalho, Solidônio Rodrigues de</creatorcontrib><title>Computational and Mathematical Model with Phase Change and Metal Addition Applied to GMAW</title><title>Mathematical problems in engineering</title><description>This work presents a 3D computational/mathematical model to solve the heat diffusion equation with phase change, considering metal addition, complex geometry, and thermal properties varying with temperature. The finite volume method was used and the computational code was implemented in C++, using a Borland compiler. Experimental tests considering workpieces of stainless steel AISI 304 were carried out for validation of the thermal model. Inverse techniques based on Golden Section method were used to estimate the heat transfer rate to the workpieces. Experimental temperatures were measured using thermocouples type J—in a total of 07 (seven)—all connected to the welded workpiece and the Agilent 34970A data logger. The workpieces were chamfered in a 45° V-groove in which liquid metal was added on only one weld pass. An innovation presented in this work when compared to other works in scientific literature was the geometry of the weld pool. The good relation between experimental and simulated data confirmed the quality and robustness of the thermal model proposed in this work.</description><subject>Alloys</subject><subject>Austenitic stainless steels</subject><subject>Chamfering</subject><subject>Colleges & universities</subject><subject>Computation</subject><subject>Diffusion rate</subject><subject>Electrodes</subject><subject>Finite volume method</subject><subject>Gas metal arc welding</subject><subject>Geometry</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Inverse problems</subject><subject>Liquid metals</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>Optimization techniques</subject><subject>Phase change</subject><subject>Phase transitions</subject><subject>Software</subject><subject>Stainless steel</subject><subject>Stainless steels</subject><subject>Temperature</subject><subject>Thermal analysis</subject><subject>Thermal properties</subject><subject>Thermocouples</subject><subject>Thermodynamic properties</subject><subject>Weld metal pool</subject><subject>Workpieces</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0U1LxDAQBuAiCq6rN88S8CJo3UzTNOmxFF2FXfSgqKeSTVKbpV82LYv_3pQuCF48zTA8GZg3nncO-BaA0kWAgS1IxIOQRgfeDGhEfAohO3Q9DkIfAvJ-7J1Yu8U4AAp85n2kTdUOvehNU4sSiVqhtegLXbmJdIN1o3SJdqYv0HMhrEZpIepPPUHdO5EoZcbXKGnb0miF-gYt18nbqXeUi9Lqs32de6_3dy_pg796Wj6mycqXJCa9z0WMI07xhuE8UFIrBkzGAeEspyQGTrhgWgGPaIg3AaEEmHInhRsGMpeSkbl3Ne1tu-Zr0LbPKmOlLktR62awGXAeAsZxRB29_EO3zdC5u0cVYZcbZqO6mZTsGms7nWdtZyrRfWeAszHnbMw52-fs-PXEC1MrsTP_6YtJu4TdavGrIXZfFJIf5MaD3A</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Borges, Valério Luiz</creator><creator>Alves Figueira Júnior, Edson</creator><creator>Gonçalves de Souza, Marcelo</creator><creator>dos Santos Maia Neto, Alfredo</creator><creator>Carvalho, Solidônio Rodrigues de</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>8BQ</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-9040-8661</orcidid><orcidid>https://orcid.org/0000-0002-3290-2418</orcidid></search><sort><creationdate>20170101</creationdate><title>Computational and Mathematical Model with Phase Change and Metal Addition Applied to GMAW</title><author>Borges, Valério Luiz ; Alves Figueira Júnior, Edson ; Gonçalves de Souza, Marcelo ; dos Santos Maia Neto, Alfredo ; Carvalho, Solidônio Rodrigues de</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-8a906850b70f2dced717c92387f5391838a7ed186540b235317d1474b71cfcc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alloys</topic><topic>Austenitic stainless steels</topic><topic>Chamfering</topic><topic>Colleges & universities</topic><topic>Computation</topic><topic>Diffusion rate</topic><topic>Electrodes</topic><topic>Finite volume method</topic><topic>Gas metal arc welding</topic><topic>Geometry</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Inverse problems</topic><topic>Liquid metals</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>Optimization techniques</topic><topic>Phase change</topic><topic>Phase transitions</topic><topic>Software</topic><topic>Stainless steel</topic><topic>Stainless steels</topic><topic>Temperature</topic><topic>Thermal analysis</topic><topic>Thermal properties</topic><topic>Thermocouples</topic><topic>Thermodynamic properties</topic><topic>Weld metal pool</topic><topic>Workpieces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borges, Valério Luiz</creatorcontrib><creatorcontrib>Alves Figueira Júnior, Edson</creatorcontrib><creatorcontrib>Gonçalves de Souza, Marcelo</creatorcontrib><creatorcontrib>dos Santos Maia Neto, Alfredo</creatorcontrib><creatorcontrib>Carvalho, Solidônio Rodrigues de</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borges, Valério Luiz</au><au>Alves Figueira Júnior, Edson</au><au>Gonçalves de Souza, Marcelo</au><au>dos Santos Maia Neto, Alfredo</au><au>Carvalho, Solidônio Rodrigues de</au><au>Nouari, Mohammed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational and Mathematical Model with Phase Change and Metal Addition Applied to GMAW</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>This work presents a 3D computational/mathematical model to solve the heat diffusion equation with phase change, considering metal addition, complex geometry, and thermal properties varying with temperature. The finite volume method was used and the computational code was implemented in C++, using a Borland compiler. Experimental tests considering workpieces of stainless steel AISI 304 were carried out for validation of the thermal model. Inverse techniques based on Golden Section method were used to estimate the heat transfer rate to the workpieces. Experimental temperatures were measured using thermocouples type J—in a total of 07 (seven)—all connected to the welded workpiece and the Agilent 34970A data logger. The workpieces were chamfered in a 45° V-groove in which liquid metal was added on only one weld pass. An innovation presented in this work when compared to other works in scientific literature was the geometry of the weld pool. The good relation between experimental and simulated data confirmed the quality and robustness of the thermal model proposed in this work.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2017/3682456</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9040-8661</orcidid><orcidid>https://orcid.org/0000-0002-3290-2418</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2017-01, Vol.2017 (2017), p.1-8 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_miscellaneous_1884100965 |
source | Wiley Online Library Open Access; Free E-Journal (出版社公開部分のみ); Alma/SFX Local Collection |
subjects | Alloys Austenitic stainless steels Chamfering Colleges & universities Computation Diffusion rate Electrodes Finite volume method Gas metal arc welding Geometry Heat conductivity Heat transfer Inverse problems Liquid metals Mathematical models Mathematical problems Optimization techniques Phase change Phase transitions Software Stainless steel Stainless steels Temperature Thermal analysis Thermal properties Thermocouples Thermodynamic properties Weld metal pool Workpieces |
title | Computational and Mathematical Model with Phase Change and Metal Addition Applied to GMAW |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A42%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20and%20Mathematical%20Model%20with%20Phase%20Change%20and%20Metal%20Addition%20Applied%20to%20GMAW&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Borges,%20Val%C3%A9rio%20Luiz&rft.date=2017-01-01&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2017/3682456&rft_dat=%3Cproquest_cross%3E4306422251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1860824075&rft_id=info:pmid/&rfr_iscdi=true |