Conjugation‐Induced Thermally Activated Delayed Fluorescence (TADF): From Conventional Non‐TADF Units to TADF‐Active Polymers

Thermally activated delayed fluorescence (TADF)‐type compounds have great potential as emitter molecules in organic light‐emitting diodes, allowing for electrofluorescence with 100% internal quantum efficiency. In small molecules, TADF is achieved through the formation of intramolecular charge‐trans...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2017-02, Vol.27 (7), p.np-n/a
Hauptverfasser: Wei, Qiang, Kleine, Paul, Karpov, Yevhen, Qiu, Xianping, Komber, Hartmut, Sahre, Karin, Kiriy, Anton, Lygaitis, Ramunas, Lenk, Simone, Reineke, Sebastian, Voit, Brigitte
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page np
container_title Advanced functional materials
container_volume 27
creator Wei, Qiang
Kleine, Paul
Karpov, Yevhen
Qiu, Xianping
Komber, Hartmut
Sahre, Karin
Kiriy, Anton
Lygaitis, Ramunas
Lenk, Simone
Reineke, Sebastian
Voit, Brigitte
description Thermally activated delayed fluorescence (TADF)‐type compounds have great potential as emitter molecules in organic light‐emitting diodes, allowing for electrofluorescence with 100% internal quantum efficiency. In small molecules, TADF is achieved through the formation of intramolecular charge‐transfer states. The only design limitation is the requirement that donor and acceptor entities spatially decouple the highest occupied and lowest unoccupied molecular orbitals, respectively, to minimize exchange splitting. The development of polymeric TADF emitters, on the contrary, has seen comparably small progress and those are typically built up from monomeric units that show promising TADF properties in small molecule studies beforehand. By contrast, herein, a way to achieve TADF properties in cyclic oligomers and polymers composed of non‐TADF building blocks is shown. Due to a strongly decreased energy splitting of the polymer with respect to the individual repeating unit between the lowest singlet and triplet excited state (ΔEST) and a sufficiently high radiative decay rate kSr, a highly efficient TADF polymer with up to 71% photoluminescence quantum yield is obtained. For the first time, an encouraging method is provided for producing highly efficient TADF oligomers and polymers from solely non‐TADF units via induced conjugation, opening a new design strategy exclusive for polymers. A thermally activated delayed fluorescence (TADF) π‐conjugated cyclic polymer composed of non‐TADF building blocks is developed. Conjugation‐induced highest occupied molecular orbital destabilization leads to a decreased singlet–triplet splitting and efficient TADF in the polymer, while the repeating unit itself shows only inefficient phosphorescence. This conjugation‐induced TADF concept represents a novel molecular design rule particularly for solution‐processable polymeric materials.
doi_str_mv 10.1002/adfm.201605051
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884100324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884100324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4161-bb6bf83cc9f1f9484340bd0eaa29a21a8fbff488547218833e6c861e8847a06a3</originalsourceid><addsrcrecordid>eNqFkb1OwzAUhSMEEqWwMltiKUOL7bipw1a1FCqVn6GV2CLHvYZUTgx2UpQNiRfgGXkSnBYViYXp2tffOfK9JwhOCe4RjOmFWKq8RzGJcB_3yV7QIhGJuiGmfH93Jo-HwZFzK4zJYBCyVvAxMsWqehJlZoqv989psawkLNH8GWwutK7RUJbZWpS-NwYtal8nujIWnIRCAurMh-PJ-SWaWJMj77WGorESGt1tDJtntCiy0qHSoObmmxtPQA9G1zlYdxwcKKEdnPzUdrCYXM1HN93Z_fV0NJx1JfPf76ZplCoeShkromLGWchwusQgBI0FJYKrVCnGeZ8NKOE8DCGSPCLAORsIHImwHXS2vi_WvFbgyiTP_BhaiwJM5RIvYn6TIWUePfuDrkxl_VieiilmlGNKPdXbUtIa5yyo5MVmubB1QnDSZJI0mSS7TLwg3greMg31P3Til3X7q_0G6TCSXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920428022</pqid></control><display><type>article</type><title>Conjugation‐Induced Thermally Activated Delayed Fluorescence (TADF): From Conventional Non‐TADF Units to TADF‐Active Polymers</title><source>Access via Wiley Online Library</source><creator>Wei, Qiang ; Kleine, Paul ; Karpov, Yevhen ; Qiu, Xianping ; Komber, Hartmut ; Sahre, Karin ; Kiriy, Anton ; Lygaitis, Ramunas ; Lenk, Simone ; Reineke, Sebastian ; Voit, Brigitte</creator><creatorcontrib>Wei, Qiang ; Kleine, Paul ; Karpov, Yevhen ; Qiu, Xianping ; Komber, Hartmut ; Sahre, Karin ; Kiriy, Anton ; Lygaitis, Ramunas ; Lenk, Simone ; Reineke, Sebastian ; Voit, Brigitte</creatorcontrib><description>Thermally activated delayed fluorescence (TADF)‐type compounds have great potential as emitter molecules in organic light‐emitting diodes, allowing for electrofluorescence with 100% internal quantum efficiency. In small molecules, TADF is achieved through the formation of intramolecular charge‐transfer states. The only design limitation is the requirement that donor and acceptor entities spatially decouple the highest occupied and lowest unoccupied molecular orbitals, respectively, to minimize exchange splitting. The development of polymeric TADF emitters, on the contrary, has seen comparably small progress and those are typically built up from monomeric units that show promising TADF properties in small molecule studies beforehand. By contrast, herein, a way to achieve TADF properties in cyclic oligomers and polymers composed of non‐TADF building blocks is shown. Due to a strongly decreased energy splitting of the polymer with respect to the individual repeating unit between the lowest singlet and triplet excited state (ΔEST) and a sufficiently high radiative decay rate kSr, a highly efficient TADF polymer with up to 71% photoluminescence quantum yield is obtained. For the first time, an encouraging method is provided for producing highly efficient TADF oligomers and polymers from solely non‐TADF units via induced conjugation, opening a new design strategy exclusive for polymers. A thermally activated delayed fluorescence (TADF) π‐conjugated cyclic polymer composed of non‐TADF building blocks is developed. Conjugation‐induced highest occupied molecular orbital destabilization leads to a decreased singlet–triplet splitting and efficient TADF in the polymer, while the repeating unit itself shows only inefficient phosphorescence. This conjugation‐induced TADF concept represents a novel molecular design rule particularly for solution‐processable polymeric materials.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201605051</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>benzophenone ; Charge transfer ; conjugated polymers ; Conjugation ; Cyclic oligomers ; Decay rate ; Diodes ; Emitters ; Exchange ; Fluorescence ; Materials science ; Molecular orbitals ; Oligomers ; Organic light emitting diodes ; Photoluminescence ; polycarbazole ; Polymers ; Quantum efficiency ; Splitting ; thermally activated delayed fluorescence (TADF)</subject><ispartof>Advanced functional materials, 2017-02, Vol.27 (7), p.np-n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4161-bb6bf83cc9f1f9484340bd0eaa29a21a8fbff488547218833e6c861e8847a06a3</citedby><cites>FETCH-LOGICAL-c4161-bb6bf83cc9f1f9484340bd0eaa29a21a8fbff488547218833e6c861e8847a06a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201605051$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201605051$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids></links><search><creatorcontrib>Wei, Qiang</creatorcontrib><creatorcontrib>Kleine, Paul</creatorcontrib><creatorcontrib>Karpov, Yevhen</creatorcontrib><creatorcontrib>Qiu, Xianping</creatorcontrib><creatorcontrib>Komber, Hartmut</creatorcontrib><creatorcontrib>Sahre, Karin</creatorcontrib><creatorcontrib>Kiriy, Anton</creatorcontrib><creatorcontrib>Lygaitis, Ramunas</creatorcontrib><creatorcontrib>Lenk, Simone</creatorcontrib><creatorcontrib>Reineke, Sebastian</creatorcontrib><creatorcontrib>Voit, Brigitte</creatorcontrib><title>Conjugation‐Induced Thermally Activated Delayed Fluorescence (TADF): From Conventional Non‐TADF Units to TADF‐Active Polymers</title><title>Advanced functional materials</title><description>Thermally activated delayed fluorescence (TADF)‐type compounds have great potential as emitter molecules in organic light‐emitting diodes, allowing for electrofluorescence with 100% internal quantum efficiency. In small molecules, TADF is achieved through the formation of intramolecular charge‐transfer states. The only design limitation is the requirement that donor and acceptor entities spatially decouple the highest occupied and lowest unoccupied molecular orbitals, respectively, to minimize exchange splitting. The development of polymeric TADF emitters, on the contrary, has seen comparably small progress and those are typically built up from monomeric units that show promising TADF properties in small molecule studies beforehand. By contrast, herein, a way to achieve TADF properties in cyclic oligomers and polymers composed of non‐TADF building blocks is shown. Due to a strongly decreased energy splitting of the polymer with respect to the individual repeating unit between the lowest singlet and triplet excited state (ΔEST) and a sufficiently high radiative decay rate kSr, a highly efficient TADF polymer with up to 71% photoluminescence quantum yield is obtained. For the first time, an encouraging method is provided for producing highly efficient TADF oligomers and polymers from solely non‐TADF units via induced conjugation, opening a new design strategy exclusive for polymers. A thermally activated delayed fluorescence (TADF) π‐conjugated cyclic polymer composed of non‐TADF building blocks is developed. Conjugation‐induced highest occupied molecular orbital destabilization leads to a decreased singlet–triplet splitting and efficient TADF in the polymer, while the repeating unit itself shows only inefficient phosphorescence. This conjugation‐induced TADF concept represents a novel molecular design rule particularly for solution‐processable polymeric materials.</description><subject>benzophenone</subject><subject>Charge transfer</subject><subject>conjugated polymers</subject><subject>Conjugation</subject><subject>Cyclic oligomers</subject><subject>Decay rate</subject><subject>Diodes</subject><subject>Emitters</subject><subject>Exchange</subject><subject>Fluorescence</subject><subject>Materials science</subject><subject>Molecular orbitals</subject><subject>Oligomers</subject><subject>Organic light emitting diodes</subject><subject>Photoluminescence</subject><subject>polycarbazole</subject><subject>Polymers</subject><subject>Quantum efficiency</subject><subject>Splitting</subject><subject>thermally activated delayed fluorescence (TADF)</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkb1OwzAUhSMEEqWwMltiKUOL7bipw1a1FCqVn6GV2CLHvYZUTgx2UpQNiRfgGXkSnBYViYXp2tffOfK9JwhOCe4RjOmFWKq8RzGJcB_3yV7QIhGJuiGmfH93Jo-HwZFzK4zJYBCyVvAxMsWqehJlZoqv989psawkLNH8GWwutK7RUJbZWpS-NwYtal8nujIWnIRCAurMh-PJ-SWaWJMj77WGorESGt1tDJtntCiy0qHSoObmmxtPQA9G1zlYdxwcKKEdnPzUdrCYXM1HN93Z_fV0NJx1JfPf76ZplCoeShkromLGWchwusQgBI0FJYKrVCnGeZ8NKOE8DCGSPCLAORsIHImwHXS2vi_WvFbgyiTP_BhaiwJM5RIvYn6TIWUePfuDrkxl_VieiilmlGNKPdXbUtIa5yyo5MVmubB1QnDSZJI0mSS7TLwg3greMg31P3Til3X7q_0G6TCSXQ</recordid><startdate>20170217</startdate><enddate>20170217</enddate><creator>Wei, Qiang</creator><creator>Kleine, Paul</creator><creator>Karpov, Yevhen</creator><creator>Qiu, Xianping</creator><creator>Komber, Hartmut</creator><creator>Sahre, Karin</creator><creator>Kiriy, Anton</creator><creator>Lygaitis, Ramunas</creator><creator>Lenk, Simone</creator><creator>Reineke, Sebastian</creator><creator>Voit, Brigitte</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170217</creationdate><title>Conjugation‐Induced Thermally Activated Delayed Fluorescence (TADF): From Conventional Non‐TADF Units to TADF‐Active Polymers</title><author>Wei, Qiang ; Kleine, Paul ; Karpov, Yevhen ; Qiu, Xianping ; Komber, Hartmut ; Sahre, Karin ; Kiriy, Anton ; Lygaitis, Ramunas ; Lenk, Simone ; Reineke, Sebastian ; Voit, Brigitte</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4161-bb6bf83cc9f1f9484340bd0eaa29a21a8fbff488547218833e6c861e8847a06a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>benzophenone</topic><topic>Charge transfer</topic><topic>conjugated polymers</topic><topic>Conjugation</topic><topic>Cyclic oligomers</topic><topic>Decay rate</topic><topic>Diodes</topic><topic>Emitters</topic><topic>Exchange</topic><topic>Fluorescence</topic><topic>Materials science</topic><topic>Molecular orbitals</topic><topic>Oligomers</topic><topic>Organic light emitting diodes</topic><topic>Photoluminescence</topic><topic>polycarbazole</topic><topic>Polymers</topic><topic>Quantum efficiency</topic><topic>Splitting</topic><topic>thermally activated delayed fluorescence (TADF)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Qiang</creatorcontrib><creatorcontrib>Kleine, Paul</creatorcontrib><creatorcontrib>Karpov, Yevhen</creatorcontrib><creatorcontrib>Qiu, Xianping</creatorcontrib><creatorcontrib>Komber, Hartmut</creatorcontrib><creatorcontrib>Sahre, Karin</creatorcontrib><creatorcontrib>Kiriy, Anton</creatorcontrib><creatorcontrib>Lygaitis, Ramunas</creatorcontrib><creatorcontrib>Lenk, Simone</creatorcontrib><creatorcontrib>Reineke, Sebastian</creatorcontrib><creatorcontrib>Voit, Brigitte</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Qiang</au><au>Kleine, Paul</au><au>Karpov, Yevhen</au><au>Qiu, Xianping</au><au>Komber, Hartmut</au><au>Sahre, Karin</au><au>Kiriy, Anton</au><au>Lygaitis, Ramunas</au><au>Lenk, Simone</au><au>Reineke, Sebastian</au><au>Voit, Brigitte</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conjugation‐Induced Thermally Activated Delayed Fluorescence (TADF): From Conventional Non‐TADF Units to TADF‐Active Polymers</atitle><jtitle>Advanced functional materials</jtitle><date>2017-02-17</date><risdate>2017</risdate><volume>27</volume><issue>7</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Thermally activated delayed fluorescence (TADF)‐type compounds have great potential as emitter molecules in organic light‐emitting diodes, allowing for electrofluorescence with 100% internal quantum efficiency. In small molecules, TADF is achieved through the formation of intramolecular charge‐transfer states. The only design limitation is the requirement that donor and acceptor entities spatially decouple the highest occupied and lowest unoccupied molecular orbitals, respectively, to minimize exchange splitting. The development of polymeric TADF emitters, on the contrary, has seen comparably small progress and those are typically built up from monomeric units that show promising TADF properties in small molecule studies beforehand. By contrast, herein, a way to achieve TADF properties in cyclic oligomers and polymers composed of non‐TADF building blocks is shown. Due to a strongly decreased energy splitting of the polymer with respect to the individual repeating unit between the lowest singlet and triplet excited state (ΔEST) and a sufficiently high radiative decay rate kSr, a highly efficient TADF polymer with up to 71% photoluminescence quantum yield is obtained. For the first time, an encouraging method is provided for producing highly efficient TADF oligomers and polymers from solely non‐TADF units via induced conjugation, opening a new design strategy exclusive for polymers. A thermally activated delayed fluorescence (TADF) π‐conjugated cyclic polymer composed of non‐TADF building blocks is developed. Conjugation‐induced highest occupied molecular orbital destabilization leads to a decreased singlet–triplet splitting and efficient TADF in the polymer, while the repeating unit itself shows only inefficient phosphorescence. This conjugation‐induced TADF concept represents a novel molecular design rule particularly for solution‐processable polymeric materials.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201605051</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2017-02, Vol.27 (7), p.np-n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_miscellaneous_1884100324
source Access via Wiley Online Library
subjects benzophenone
Charge transfer
conjugated polymers
Conjugation
Cyclic oligomers
Decay rate
Diodes
Emitters
Exchange
Fluorescence
Materials science
Molecular orbitals
Oligomers
Organic light emitting diodes
Photoluminescence
polycarbazole
Polymers
Quantum efficiency
Splitting
thermally activated delayed fluorescence (TADF)
title Conjugation‐Induced Thermally Activated Delayed Fluorescence (TADF): From Conventional Non‐TADF Units to TADF‐Active Polymers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T16%3A05%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conjugation%E2%80%90Induced%20Thermally%20Activated%20Delayed%20Fluorescence%20(TADF):%20From%20Conventional%20Non%E2%80%90TADF%20Units%20to%20TADF%E2%80%90Active%20Polymers&rft.jtitle=Advanced%20functional%20materials&rft.au=Wei,%20Qiang&rft.date=2017-02-17&rft.volume=27&rft.issue=7&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201605051&rft_dat=%3Cproquest_cross%3E1884100324%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1920428022&rft_id=info:pmid/&rfr_iscdi=true