Conjugation‐Induced Thermally Activated Delayed Fluorescence (TADF): From Conventional Non‐TADF Units to TADF‐Active Polymers
Thermally activated delayed fluorescence (TADF)‐type compounds have great potential as emitter molecules in organic light‐emitting diodes, allowing for electrofluorescence with 100% internal quantum efficiency. In small molecules, TADF is achieved through the formation of intramolecular charge‐trans...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2017-02, Vol.27 (7), p.np-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 7 |
container_start_page | np |
container_title | Advanced functional materials |
container_volume | 27 |
creator | Wei, Qiang Kleine, Paul Karpov, Yevhen Qiu, Xianping Komber, Hartmut Sahre, Karin Kiriy, Anton Lygaitis, Ramunas Lenk, Simone Reineke, Sebastian Voit, Brigitte |
description | Thermally activated delayed fluorescence (TADF)‐type compounds have great potential as emitter molecules in organic light‐emitting diodes, allowing for electrofluorescence with 100% internal quantum efficiency. In small molecules, TADF is achieved through the formation of intramolecular charge‐transfer states. The only design limitation is the requirement that donor and acceptor entities spatially decouple the highest occupied and lowest unoccupied molecular orbitals, respectively, to minimize exchange splitting. The development of polymeric TADF emitters, on the contrary, has seen comparably small progress and those are typically built up from monomeric units that show promising TADF properties in small molecule studies beforehand. By contrast, herein, a way to achieve TADF properties in cyclic oligomers and polymers composed of non‐TADF building blocks is shown. Due to a strongly decreased energy splitting of the polymer with respect to the individual repeating unit between the lowest singlet and triplet excited state (ΔEST) and a sufficiently high radiative decay rate kSr, a highly efficient TADF polymer with up to 71% photoluminescence quantum yield is obtained. For the first time, an encouraging method is provided for producing highly efficient TADF oligomers and polymers from solely non‐TADF units via induced conjugation, opening a new design strategy exclusive for polymers.
A thermally activated delayed fluorescence (TADF) π‐conjugated cyclic polymer composed of non‐TADF building blocks is developed. Conjugation‐induced highest occupied molecular orbital destabilization leads to a decreased singlet–triplet splitting and efficient TADF in the polymer, while the repeating unit itself shows only inefficient phosphorescence. This conjugation‐induced TADF concept represents a novel molecular design rule particularly for solution‐processable polymeric materials. |
doi_str_mv | 10.1002/adfm.201605051 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884100324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884100324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4161-bb6bf83cc9f1f9484340bd0eaa29a21a8fbff488547218833e6c861e8847a06a3</originalsourceid><addsrcrecordid>eNqFkb1OwzAUhSMEEqWwMltiKUOL7bipw1a1FCqVn6GV2CLHvYZUTgx2UpQNiRfgGXkSnBYViYXp2tffOfK9JwhOCe4RjOmFWKq8RzGJcB_3yV7QIhGJuiGmfH93Jo-HwZFzK4zJYBCyVvAxMsWqehJlZoqv989psawkLNH8GWwutK7RUJbZWpS-NwYtal8nujIWnIRCAurMh-PJ-SWaWJMj77WGorESGt1tDJtntCiy0qHSoObmmxtPQA9G1zlYdxwcKKEdnPzUdrCYXM1HN93Z_fV0NJx1JfPf76ZplCoeShkromLGWchwusQgBI0FJYKrVCnGeZ8NKOE8DCGSPCLAORsIHImwHXS2vi_WvFbgyiTP_BhaiwJM5RIvYn6TIWUePfuDrkxl_VieiilmlGNKPdXbUtIa5yyo5MVmubB1QnDSZJI0mSS7TLwg3greMg31P3Til3X7q_0G6TCSXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920428022</pqid></control><display><type>article</type><title>Conjugation‐Induced Thermally Activated Delayed Fluorescence (TADF): From Conventional Non‐TADF Units to TADF‐Active Polymers</title><source>Access via Wiley Online Library</source><creator>Wei, Qiang ; Kleine, Paul ; Karpov, Yevhen ; Qiu, Xianping ; Komber, Hartmut ; Sahre, Karin ; Kiriy, Anton ; Lygaitis, Ramunas ; Lenk, Simone ; Reineke, Sebastian ; Voit, Brigitte</creator><creatorcontrib>Wei, Qiang ; Kleine, Paul ; Karpov, Yevhen ; Qiu, Xianping ; Komber, Hartmut ; Sahre, Karin ; Kiriy, Anton ; Lygaitis, Ramunas ; Lenk, Simone ; Reineke, Sebastian ; Voit, Brigitte</creatorcontrib><description>Thermally activated delayed fluorescence (TADF)‐type compounds have great potential as emitter molecules in organic light‐emitting diodes, allowing for electrofluorescence with 100% internal quantum efficiency. In small molecules, TADF is achieved through the formation of intramolecular charge‐transfer states. The only design limitation is the requirement that donor and acceptor entities spatially decouple the highest occupied and lowest unoccupied molecular orbitals, respectively, to minimize exchange splitting. The development of polymeric TADF emitters, on the contrary, has seen comparably small progress and those are typically built up from monomeric units that show promising TADF properties in small molecule studies beforehand. By contrast, herein, a way to achieve TADF properties in cyclic oligomers and polymers composed of non‐TADF building blocks is shown. Due to a strongly decreased energy splitting of the polymer with respect to the individual repeating unit between the lowest singlet and triplet excited state (ΔEST) and a sufficiently high radiative decay rate kSr, a highly efficient TADF polymer with up to 71% photoluminescence quantum yield is obtained. For the first time, an encouraging method is provided for producing highly efficient TADF oligomers and polymers from solely non‐TADF units via induced conjugation, opening a new design strategy exclusive for polymers.
A thermally activated delayed fluorescence (TADF) π‐conjugated cyclic polymer composed of non‐TADF building blocks is developed. Conjugation‐induced highest occupied molecular orbital destabilization leads to a decreased singlet–triplet splitting and efficient TADF in the polymer, while the repeating unit itself shows only inefficient phosphorescence. This conjugation‐induced TADF concept represents a novel molecular design rule particularly for solution‐processable polymeric materials.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201605051</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>benzophenone ; Charge transfer ; conjugated polymers ; Conjugation ; Cyclic oligomers ; Decay rate ; Diodes ; Emitters ; Exchange ; Fluorescence ; Materials science ; Molecular orbitals ; Oligomers ; Organic light emitting diodes ; Photoluminescence ; polycarbazole ; Polymers ; Quantum efficiency ; Splitting ; thermally activated delayed fluorescence (TADF)</subject><ispartof>Advanced functional materials, 2017-02, Vol.27 (7), p.np-n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4161-bb6bf83cc9f1f9484340bd0eaa29a21a8fbff488547218833e6c861e8847a06a3</citedby><cites>FETCH-LOGICAL-c4161-bb6bf83cc9f1f9484340bd0eaa29a21a8fbff488547218833e6c861e8847a06a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201605051$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201605051$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids></links><search><creatorcontrib>Wei, Qiang</creatorcontrib><creatorcontrib>Kleine, Paul</creatorcontrib><creatorcontrib>Karpov, Yevhen</creatorcontrib><creatorcontrib>Qiu, Xianping</creatorcontrib><creatorcontrib>Komber, Hartmut</creatorcontrib><creatorcontrib>Sahre, Karin</creatorcontrib><creatorcontrib>Kiriy, Anton</creatorcontrib><creatorcontrib>Lygaitis, Ramunas</creatorcontrib><creatorcontrib>Lenk, Simone</creatorcontrib><creatorcontrib>Reineke, Sebastian</creatorcontrib><creatorcontrib>Voit, Brigitte</creatorcontrib><title>Conjugation‐Induced Thermally Activated Delayed Fluorescence (TADF): From Conventional Non‐TADF Units to TADF‐Active Polymers</title><title>Advanced functional materials</title><description>Thermally activated delayed fluorescence (TADF)‐type compounds have great potential as emitter molecules in organic light‐emitting diodes, allowing for electrofluorescence with 100% internal quantum efficiency. In small molecules, TADF is achieved through the formation of intramolecular charge‐transfer states. The only design limitation is the requirement that donor and acceptor entities spatially decouple the highest occupied and lowest unoccupied molecular orbitals, respectively, to minimize exchange splitting. The development of polymeric TADF emitters, on the contrary, has seen comparably small progress and those are typically built up from monomeric units that show promising TADF properties in small molecule studies beforehand. By contrast, herein, a way to achieve TADF properties in cyclic oligomers and polymers composed of non‐TADF building blocks is shown. Due to a strongly decreased energy splitting of the polymer with respect to the individual repeating unit between the lowest singlet and triplet excited state (ΔEST) and a sufficiently high radiative decay rate kSr, a highly efficient TADF polymer with up to 71% photoluminescence quantum yield is obtained. For the first time, an encouraging method is provided for producing highly efficient TADF oligomers and polymers from solely non‐TADF units via induced conjugation, opening a new design strategy exclusive for polymers.
A thermally activated delayed fluorescence (TADF) π‐conjugated cyclic polymer composed of non‐TADF building blocks is developed. Conjugation‐induced highest occupied molecular orbital destabilization leads to a decreased singlet–triplet splitting and efficient TADF in the polymer, while the repeating unit itself shows only inefficient phosphorescence. This conjugation‐induced TADF concept represents a novel molecular design rule particularly for solution‐processable polymeric materials.</description><subject>benzophenone</subject><subject>Charge transfer</subject><subject>conjugated polymers</subject><subject>Conjugation</subject><subject>Cyclic oligomers</subject><subject>Decay rate</subject><subject>Diodes</subject><subject>Emitters</subject><subject>Exchange</subject><subject>Fluorescence</subject><subject>Materials science</subject><subject>Molecular orbitals</subject><subject>Oligomers</subject><subject>Organic light emitting diodes</subject><subject>Photoluminescence</subject><subject>polycarbazole</subject><subject>Polymers</subject><subject>Quantum efficiency</subject><subject>Splitting</subject><subject>thermally activated delayed fluorescence (TADF)</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkb1OwzAUhSMEEqWwMltiKUOL7bipw1a1FCqVn6GV2CLHvYZUTgx2UpQNiRfgGXkSnBYViYXp2tffOfK9JwhOCe4RjOmFWKq8RzGJcB_3yV7QIhGJuiGmfH93Jo-HwZFzK4zJYBCyVvAxMsWqehJlZoqv989psawkLNH8GWwutK7RUJbZWpS-NwYtal8nujIWnIRCAurMh-PJ-SWaWJMj77WGorESGt1tDJtntCiy0qHSoObmmxtPQA9G1zlYdxwcKKEdnPzUdrCYXM1HN93Z_fV0NJx1JfPf76ZplCoeShkromLGWchwusQgBI0FJYKrVCnGeZ8NKOE8DCGSPCLAORsIHImwHXS2vi_WvFbgyiTP_BhaiwJM5RIvYn6TIWUePfuDrkxl_VieiilmlGNKPdXbUtIa5yyo5MVmubB1QnDSZJI0mSS7TLwg3greMg31P3Til3X7q_0G6TCSXQ</recordid><startdate>20170217</startdate><enddate>20170217</enddate><creator>Wei, Qiang</creator><creator>Kleine, Paul</creator><creator>Karpov, Yevhen</creator><creator>Qiu, Xianping</creator><creator>Komber, Hartmut</creator><creator>Sahre, Karin</creator><creator>Kiriy, Anton</creator><creator>Lygaitis, Ramunas</creator><creator>Lenk, Simone</creator><creator>Reineke, Sebastian</creator><creator>Voit, Brigitte</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170217</creationdate><title>Conjugation‐Induced Thermally Activated Delayed Fluorescence (TADF): From Conventional Non‐TADF Units to TADF‐Active Polymers</title><author>Wei, Qiang ; Kleine, Paul ; Karpov, Yevhen ; Qiu, Xianping ; Komber, Hartmut ; Sahre, Karin ; Kiriy, Anton ; Lygaitis, Ramunas ; Lenk, Simone ; Reineke, Sebastian ; Voit, Brigitte</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4161-bb6bf83cc9f1f9484340bd0eaa29a21a8fbff488547218833e6c861e8847a06a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>benzophenone</topic><topic>Charge transfer</topic><topic>conjugated polymers</topic><topic>Conjugation</topic><topic>Cyclic oligomers</topic><topic>Decay rate</topic><topic>Diodes</topic><topic>Emitters</topic><topic>Exchange</topic><topic>Fluorescence</topic><topic>Materials science</topic><topic>Molecular orbitals</topic><topic>Oligomers</topic><topic>Organic light emitting diodes</topic><topic>Photoluminescence</topic><topic>polycarbazole</topic><topic>Polymers</topic><topic>Quantum efficiency</topic><topic>Splitting</topic><topic>thermally activated delayed fluorescence (TADF)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Qiang</creatorcontrib><creatorcontrib>Kleine, Paul</creatorcontrib><creatorcontrib>Karpov, Yevhen</creatorcontrib><creatorcontrib>Qiu, Xianping</creatorcontrib><creatorcontrib>Komber, Hartmut</creatorcontrib><creatorcontrib>Sahre, Karin</creatorcontrib><creatorcontrib>Kiriy, Anton</creatorcontrib><creatorcontrib>Lygaitis, Ramunas</creatorcontrib><creatorcontrib>Lenk, Simone</creatorcontrib><creatorcontrib>Reineke, Sebastian</creatorcontrib><creatorcontrib>Voit, Brigitte</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Qiang</au><au>Kleine, Paul</au><au>Karpov, Yevhen</au><au>Qiu, Xianping</au><au>Komber, Hartmut</au><au>Sahre, Karin</au><au>Kiriy, Anton</au><au>Lygaitis, Ramunas</au><au>Lenk, Simone</au><au>Reineke, Sebastian</au><au>Voit, Brigitte</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conjugation‐Induced Thermally Activated Delayed Fluorescence (TADF): From Conventional Non‐TADF Units to TADF‐Active Polymers</atitle><jtitle>Advanced functional materials</jtitle><date>2017-02-17</date><risdate>2017</risdate><volume>27</volume><issue>7</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Thermally activated delayed fluorescence (TADF)‐type compounds have great potential as emitter molecules in organic light‐emitting diodes, allowing for electrofluorescence with 100% internal quantum efficiency. In small molecules, TADF is achieved through the formation of intramolecular charge‐transfer states. The only design limitation is the requirement that donor and acceptor entities spatially decouple the highest occupied and lowest unoccupied molecular orbitals, respectively, to minimize exchange splitting. The development of polymeric TADF emitters, on the contrary, has seen comparably small progress and those are typically built up from monomeric units that show promising TADF properties in small molecule studies beforehand. By contrast, herein, a way to achieve TADF properties in cyclic oligomers and polymers composed of non‐TADF building blocks is shown. Due to a strongly decreased energy splitting of the polymer with respect to the individual repeating unit between the lowest singlet and triplet excited state (ΔEST) and a sufficiently high radiative decay rate kSr, a highly efficient TADF polymer with up to 71% photoluminescence quantum yield is obtained. For the first time, an encouraging method is provided for producing highly efficient TADF oligomers and polymers from solely non‐TADF units via induced conjugation, opening a new design strategy exclusive for polymers.
A thermally activated delayed fluorescence (TADF) π‐conjugated cyclic polymer composed of non‐TADF building blocks is developed. Conjugation‐induced highest occupied molecular orbital destabilization leads to a decreased singlet–triplet splitting and efficient TADF in the polymer, while the repeating unit itself shows only inefficient phosphorescence. This conjugation‐induced TADF concept represents a novel molecular design rule particularly for solution‐processable polymeric materials.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201605051</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2017-02, Vol.27 (7), p.np-n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_miscellaneous_1884100324 |
source | Access via Wiley Online Library |
subjects | benzophenone Charge transfer conjugated polymers Conjugation Cyclic oligomers Decay rate Diodes Emitters Exchange Fluorescence Materials science Molecular orbitals Oligomers Organic light emitting diodes Photoluminescence polycarbazole Polymers Quantum efficiency Splitting thermally activated delayed fluorescence (TADF) |
title | Conjugation‐Induced Thermally Activated Delayed Fluorescence (TADF): From Conventional Non‐TADF Units to TADF‐Active Polymers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T16%3A05%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conjugation%E2%80%90Induced%20Thermally%20Activated%20Delayed%20Fluorescence%20(TADF):%20From%20Conventional%20Non%E2%80%90TADF%20Units%20to%20TADF%E2%80%90Active%20Polymers&rft.jtitle=Advanced%20functional%20materials&rft.au=Wei,%20Qiang&rft.date=2017-02-17&rft.volume=27&rft.issue=7&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201605051&rft_dat=%3Cproquest_cross%3E1884100324%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1920428022&rft_id=info:pmid/&rfr_iscdi=true |