Comparison of data reduction algorithms for LiDAR-derived digital terrain model generalisation
A digital terrain model (DTM) is a three-dimensional representation of the terrain relief created from discrete points related to each other through their elevations. New technologies such as satellite remote sensing, airborne laser scanning and radar interferometry are efficient methods for constru...
Gespeichert in:
Veröffentlicht in: | Area (London 1969) 2016-12, Vol.48 (4), p.521-532 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 532 |
---|---|
container_issue | 4 |
container_start_page | 521 |
container_title | Area (London 1969) |
container_volume | 48 |
creator | Yilmaz, M Uysal, M |
description | A digital terrain model (DTM) is a three-dimensional representation of the terrain relief created from discrete points related to each other through their elevations. New technologies such as satellite remote sensing, airborne laser scanning and radar interferometry are efficient methods for constructing high-quality DTMs in a cost-effective manner. The accuracy of a DTM is influenced by a number of factors, including the accuracy, density and spatial distribution of elevation points, the terrain surface characteristics, etc. In this paper, direct comparisons of absolute and relative vertical accuracies are made between data reduction algorithms for the generalisation of DTM extracted from airborne Light Detection and Ranging (LiDAR) data. The absolute vertical accuracies are presented in terms of the mean error (ME), the mean absolute error (MAE) and the root mean square error (RMSE) and the relative vertical accuracies are characterised as per cent slope over Mount St Helens in southwest Washington State. The results show that LiDAR datasets can be reduced to 50 per cent density level by a uniform data reduction algorithm using triangulation with a linear interpolation method for the generalisation of DTM while still maintaining the quality of the original data. |
doi_str_mv | 10.1111/area.12276 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884096128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44131885</jstor_id><sourcerecordid>44131885</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3236-efed28eaebf4e429187df9bae58cc4db174feab9cc34885a6f6f2d930e6e800a3</originalsourceid><addsrcrecordid>eNqNUEtP4zAQtlYgbXlc9r6Sj1wCduw4zrEqlIe6IFWgShywpvG4GJK62Oku_fekdMWZuczje2j0EfKLs1Pe1xlEhFOe56X6QQZclkUmS5XvkQFjTGZMV_InOUjpZbuqgg3I0yi0K4g-hSUNjlrogEa067rz_QWaRYi-e24TdSHSiT8fTjOL0f9FS61f-A4a2mGM4Je0DRYbusAlRmh8gq3DEdl30CQ8_t8PycP44n50lU3uLq9Hw0nmRS5Uhg5trhFw7iTKvOK6tK6aAxa6rqWd81I6hHlV10JqXYByyuW2EgwVasZAHJKTne8qhrc1ps60PtXYNLDEsE6Gay1ZpXiuv0FVsugDZKKn8h31n29wY1bRtxA3hjOzDdtswzafYZvh9GL4OfWa3zvNS-pC_NJIyUX_RNHj2Q73qcP3Lxziq1GlKAszu700-s94Np7dPJob8QFTE49J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1864527603</pqid></control><display><type>article</type><title>Comparison of data reduction algorithms for LiDAR-derived digital terrain model generalisation</title><source>Jstor Complete Legacy</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yilmaz, M ; Uysal, M</creator><creatorcontrib>Yilmaz, M ; Uysal, M</creatorcontrib><description>A digital terrain model (DTM) is a three-dimensional representation of the terrain relief created from discrete points related to each other through their elevations. New technologies such as satellite remote sensing, airborne laser scanning and radar interferometry are efficient methods for constructing high-quality DTMs in a cost-effective manner. The accuracy of a DTM is influenced by a number of factors, including the accuracy, density and spatial distribution of elevation points, the terrain surface characteristics, etc. In this paper, direct comparisons of absolute and relative vertical accuracies are made between data reduction algorithms for the generalisation of DTM extracted from airborne Light Detection and Ranging (LiDAR) data. The absolute vertical accuracies are presented in terms of the mean error (ME), the mean absolute error (MAE) and the root mean square error (RMSE) and the relative vertical accuracies are characterised as per cent slope over Mount St Helens in southwest Washington State. The results show that LiDAR datasets can be reduced to 50 per cent density level by a uniform data reduction algorithm using triangulation with a linear interpolation method for the generalisation of DTM while still maintaining the quality of the original data.</description><identifier>ISSN: 0004-0894</identifier><identifier>EISSN: 1475-4762</identifier><identifier>DOI: 10.1111/area.12276</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>absolute and relative vertical accuracy ; Accuracy ; Algorithms ; Comparative analysis ; Construction methods ; Data analysis ; Data models ; Data reduction ; Digital ; DTM ; Geography ; LiDAR ; Root-mean-square errors ; Terrain ; U.S.A</subject><ispartof>Area (London 1969), 2016-12, Vol.48 (4), p.521-532</ispartof><rights>2016 Royal Geographical Society (with the Institute of British Geographers)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44131885$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44131885$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27901,27902,45550,45551,57992,58225</link.rule.ids></links><search><creatorcontrib>Yilmaz, M</creatorcontrib><creatorcontrib>Uysal, M</creatorcontrib><title>Comparison of data reduction algorithms for LiDAR-derived digital terrain model generalisation</title><title>Area (London 1969)</title><addtitle>Area</addtitle><description>A digital terrain model (DTM) is a three-dimensional representation of the terrain relief created from discrete points related to each other through their elevations. New technologies such as satellite remote sensing, airborne laser scanning and radar interferometry are efficient methods for constructing high-quality DTMs in a cost-effective manner. The accuracy of a DTM is influenced by a number of factors, including the accuracy, density and spatial distribution of elevation points, the terrain surface characteristics, etc. In this paper, direct comparisons of absolute and relative vertical accuracies are made between data reduction algorithms for the generalisation of DTM extracted from airborne Light Detection and Ranging (LiDAR) data. The absolute vertical accuracies are presented in terms of the mean error (ME), the mean absolute error (MAE) and the root mean square error (RMSE) and the relative vertical accuracies are characterised as per cent slope over Mount St Helens in southwest Washington State. The results show that LiDAR datasets can be reduced to 50 per cent density level by a uniform data reduction algorithm using triangulation with a linear interpolation method for the generalisation of DTM while still maintaining the quality of the original data.</description><subject>absolute and relative vertical accuracy</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Comparative analysis</subject><subject>Construction methods</subject><subject>Data analysis</subject><subject>Data models</subject><subject>Data reduction</subject><subject>Digital</subject><subject>DTM</subject><subject>Geography</subject><subject>LiDAR</subject><subject>Root-mean-square errors</subject><subject>Terrain</subject><subject>U.S.A</subject><issn>0004-0894</issn><issn>1475-4762</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNUEtP4zAQtlYgbXlc9r6Sj1wCduw4zrEqlIe6IFWgShywpvG4GJK62Oku_fekdMWZuczje2j0EfKLs1Pe1xlEhFOe56X6QQZclkUmS5XvkQFjTGZMV_InOUjpZbuqgg3I0yi0K4g-hSUNjlrogEa067rz_QWaRYi-e24TdSHSiT8fTjOL0f9FS61f-A4a2mGM4Je0DRYbusAlRmh8gq3DEdl30CQ8_t8PycP44n50lU3uLq9Hw0nmRS5Uhg5trhFw7iTKvOK6tK6aAxa6rqWd81I6hHlV10JqXYByyuW2EgwVasZAHJKTne8qhrc1ps60PtXYNLDEsE6Gay1ZpXiuv0FVsugDZKKn8h31n29wY1bRtxA3hjOzDdtswzafYZvh9GL4OfWa3zvNS-pC_NJIyUX_RNHj2Q73qcP3Lxziq1GlKAszu700-s94Np7dPJob8QFTE49J</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Yilmaz, M</creator><creator>Uysal, M</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons Ltd</general><scope>BSCLL</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>201612</creationdate><title>Comparison of data reduction algorithms for LiDAR-derived digital terrain model generalisation</title><author>Yilmaz, M ; Uysal, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3236-efed28eaebf4e429187df9bae58cc4db174feab9cc34885a6f6f2d930e6e800a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>absolute and relative vertical accuracy</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Comparative analysis</topic><topic>Construction methods</topic><topic>Data analysis</topic><topic>Data models</topic><topic>Data reduction</topic><topic>Digital</topic><topic>DTM</topic><topic>Geography</topic><topic>LiDAR</topic><topic>Root-mean-square errors</topic><topic>Terrain</topic><topic>U.S.A</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yilmaz, M</creatorcontrib><creatorcontrib>Uysal, M</creatorcontrib><collection>Istex</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Area (London 1969)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yilmaz, M</au><au>Uysal, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of data reduction algorithms for LiDAR-derived digital terrain model generalisation</atitle><jtitle>Area (London 1969)</jtitle><addtitle>Area</addtitle><date>2016-12</date><risdate>2016</risdate><volume>48</volume><issue>4</issue><spage>521</spage><epage>532</epage><pages>521-532</pages><issn>0004-0894</issn><eissn>1475-4762</eissn><abstract>A digital terrain model (DTM) is a three-dimensional representation of the terrain relief created from discrete points related to each other through their elevations. New technologies such as satellite remote sensing, airborne laser scanning and radar interferometry are efficient methods for constructing high-quality DTMs in a cost-effective manner. The accuracy of a DTM is influenced by a number of factors, including the accuracy, density and spatial distribution of elevation points, the terrain surface characteristics, etc. In this paper, direct comparisons of absolute and relative vertical accuracies are made between data reduction algorithms for the generalisation of DTM extracted from airborne Light Detection and Ranging (LiDAR) data. The absolute vertical accuracies are presented in terms of the mean error (ME), the mean absolute error (MAE) and the root mean square error (RMSE) and the relative vertical accuracies are characterised as per cent slope over Mount St Helens in southwest Washington State. The results show that LiDAR datasets can be reduced to 50 per cent density level by a uniform data reduction algorithm using triangulation with a linear interpolation method for the generalisation of DTM while still maintaining the quality of the original data.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1111/area.12276</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-0894 |
ispartof | Area (London 1969), 2016-12, Vol.48 (4), p.521-532 |
issn | 0004-0894 1475-4762 |
language | eng |
recordid | cdi_proquest_miscellaneous_1884096128 |
source | Jstor Complete Legacy; Wiley Online Library Journals Frontfile Complete |
subjects | absolute and relative vertical accuracy Accuracy Algorithms Comparative analysis Construction methods Data analysis Data models Data reduction Digital DTM Geography LiDAR Root-mean-square errors Terrain U.S.A |
title | Comparison of data reduction algorithms for LiDAR-derived digital terrain model generalisation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T13%3A37%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20data%20reduction%20algorithms%20for%20LiDAR-derived%20digital%20terrain%20model%20generalisation&rft.jtitle=Area%20(London%201969)&rft.au=Yilmaz,%20M&rft.date=2016-12&rft.volume=48&rft.issue=4&rft.spage=521&rft.epage=532&rft.pages=521-532&rft.issn=0004-0894&rft.eissn=1475-4762&rft_id=info:doi/10.1111/area.12276&rft_dat=%3Cjstor_proqu%3E44131885%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1864527603&rft_id=info:pmid/&rft_jstor_id=44131885&rfr_iscdi=true |