Comparison of data reduction algorithms for LiDAR-derived digital terrain model generalisation

A digital terrain model (DTM) is a three-dimensional representation of the terrain relief created from discrete points related to each other through their elevations. New technologies such as satellite remote sensing, airborne laser scanning and radar interferometry are efficient methods for constru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Area (London 1969) 2016-12, Vol.48 (4), p.521-532
Hauptverfasser: Yilmaz, M, Uysal, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 532
container_issue 4
container_start_page 521
container_title Area (London 1969)
container_volume 48
creator Yilmaz, M
Uysal, M
description A digital terrain model (DTM) is a three-dimensional representation of the terrain relief created from discrete points related to each other through their elevations. New technologies such as satellite remote sensing, airborne laser scanning and radar interferometry are efficient methods for constructing high-quality DTMs in a cost-effective manner. The accuracy of a DTM is influenced by a number of factors, including the accuracy, density and spatial distribution of elevation points, the terrain surface characteristics, etc. In this paper, direct comparisons of absolute and relative vertical accuracies are made between data reduction algorithms for the generalisation of DTM extracted from airborne Light Detection and Ranging (LiDAR) data. The absolute vertical accuracies are presented in terms of the mean error (ME), the mean absolute error (MAE) and the root mean square error (RMSE) and the relative vertical accuracies are characterised as per cent slope over Mount St Helens in southwest Washington State. The results show that LiDAR datasets can be reduced to 50 per cent density level by a uniform data reduction algorithm using triangulation with a linear interpolation method for the generalisation of DTM while still maintaining the quality of the original data.
doi_str_mv 10.1111/area.12276
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884096128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44131885</jstor_id><sourcerecordid>44131885</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3236-efed28eaebf4e429187df9bae58cc4db174feab9cc34885a6f6f2d930e6e800a3</originalsourceid><addsrcrecordid>eNqNUEtP4zAQtlYgbXlc9r6Sj1wCduw4zrEqlIe6IFWgShywpvG4GJK62Oku_fekdMWZuczje2j0EfKLs1Pe1xlEhFOe56X6QQZclkUmS5XvkQFjTGZMV_InOUjpZbuqgg3I0yi0K4g-hSUNjlrogEa067rz_QWaRYi-e24TdSHSiT8fTjOL0f9FS61f-A4a2mGM4Je0DRYbusAlRmh8gq3DEdl30CQ8_t8PycP44n50lU3uLq9Hw0nmRS5Uhg5trhFw7iTKvOK6tK6aAxa6rqWd81I6hHlV10JqXYByyuW2EgwVasZAHJKTne8qhrc1ps60PtXYNLDEsE6Gay1ZpXiuv0FVsugDZKKn8h31n29wY1bRtxA3hjOzDdtswzafYZvh9GL4OfWa3zvNS-pC_NJIyUX_RNHj2Q73qcP3Lxziq1GlKAszu700-s94Np7dPJob8QFTE49J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1864527603</pqid></control><display><type>article</type><title>Comparison of data reduction algorithms for LiDAR-derived digital terrain model generalisation</title><source>Jstor Complete Legacy</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yilmaz, M ; Uysal, M</creator><creatorcontrib>Yilmaz, M ; Uysal, M</creatorcontrib><description>A digital terrain model (DTM) is a three-dimensional representation of the terrain relief created from discrete points related to each other through their elevations. New technologies such as satellite remote sensing, airborne laser scanning and radar interferometry are efficient methods for constructing high-quality DTMs in a cost-effective manner. The accuracy of a DTM is influenced by a number of factors, including the accuracy, density and spatial distribution of elevation points, the terrain surface characteristics, etc. In this paper, direct comparisons of absolute and relative vertical accuracies are made between data reduction algorithms for the generalisation of DTM extracted from airborne Light Detection and Ranging (LiDAR) data. The absolute vertical accuracies are presented in terms of the mean error (ME), the mean absolute error (MAE) and the root mean square error (RMSE) and the relative vertical accuracies are characterised as per cent slope over Mount St Helens in southwest Washington State. The results show that LiDAR datasets can be reduced to 50 per cent density level by a uniform data reduction algorithm using triangulation with a linear interpolation method for the generalisation of DTM while still maintaining the quality of the original data.</description><identifier>ISSN: 0004-0894</identifier><identifier>EISSN: 1475-4762</identifier><identifier>DOI: 10.1111/area.12276</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>absolute and relative vertical accuracy ; Accuracy ; Algorithms ; Comparative analysis ; Construction methods ; Data analysis ; Data models ; Data reduction ; Digital ; DTM ; Geography ; LiDAR ; Root-mean-square errors ; Terrain ; U.S.A</subject><ispartof>Area (London 1969), 2016-12, Vol.48 (4), p.521-532</ispartof><rights>2016 Royal Geographical Society (with the Institute of British Geographers)</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44131885$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44131885$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27901,27902,45550,45551,57992,58225</link.rule.ids></links><search><creatorcontrib>Yilmaz, M</creatorcontrib><creatorcontrib>Uysal, M</creatorcontrib><title>Comparison of data reduction algorithms for LiDAR-derived digital terrain model generalisation</title><title>Area (London 1969)</title><addtitle>Area</addtitle><description>A digital terrain model (DTM) is a three-dimensional representation of the terrain relief created from discrete points related to each other through their elevations. New technologies such as satellite remote sensing, airborne laser scanning and radar interferometry are efficient methods for constructing high-quality DTMs in a cost-effective manner. The accuracy of a DTM is influenced by a number of factors, including the accuracy, density and spatial distribution of elevation points, the terrain surface characteristics, etc. In this paper, direct comparisons of absolute and relative vertical accuracies are made between data reduction algorithms for the generalisation of DTM extracted from airborne Light Detection and Ranging (LiDAR) data. The absolute vertical accuracies are presented in terms of the mean error (ME), the mean absolute error (MAE) and the root mean square error (RMSE) and the relative vertical accuracies are characterised as per cent slope over Mount St Helens in southwest Washington State. The results show that LiDAR datasets can be reduced to 50 per cent density level by a uniform data reduction algorithm using triangulation with a linear interpolation method for the generalisation of DTM while still maintaining the quality of the original data.</description><subject>absolute and relative vertical accuracy</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Comparative analysis</subject><subject>Construction methods</subject><subject>Data analysis</subject><subject>Data models</subject><subject>Data reduction</subject><subject>Digital</subject><subject>DTM</subject><subject>Geography</subject><subject>LiDAR</subject><subject>Root-mean-square errors</subject><subject>Terrain</subject><subject>U.S.A</subject><issn>0004-0894</issn><issn>1475-4762</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNUEtP4zAQtlYgbXlc9r6Sj1wCduw4zrEqlIe6IFWgShywpvG4GJK62Oku_fekdMWZuczje2j0EfKLs1Pe1xlEhFOe56X6QQZclkUmS5XvkQFjTGZMV_InOUjpZbuqgg3I0yi0K4g-hSUNjlrogEa067rz_QWaRYi-e24TdSHSiT8fTjOL0f9FS61f-A4a2mGM4Je0DRYbusAlRmh8gq3DEdl30CQ8_t8PycP44n50lU3uLq9Hw0nmRS5Uhg5trhFw7iTKvOK6tK6aAxa6rqWd81I6hHlV10JqXYByyuW2EgwVasZAHJKTne8qhrc1ps60PtXYNLDEsE6Gay1ZpXiuv0FVsugDZKKn8h31n29wY1bRtxA3hjOzDdtswzafYZvh9GL4OfWa3zvNS-pC_NJIyUX_RNHj2Q73qcP3Lxziq1GlKAszu700-s94Np7dPJob8QFTE49J</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Yilmaz, M</creator><creator>Uysal, M</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons Ltd</general><scope>BSCLL</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>201612</creationdate><title>Comparison of data reduction algorithms for LiDAR-derived digital terrain model generalisation</title><author>Yilmaz, M ; Uysal, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3236-efed28eaebf4e429187df9bae58cc4db174feab9cc34885a6f6f2d930e6e800a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>absolute and relative vertical accuracy</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Comparative analysis</topic><topic>Construction methods</topic><topic>Data analysis</topic><topic>Data models</topic><topic>Data reduction</topic><topic>Digital</topic><topic>DTM</topic><topic>Geography</topic><topic>LiDAR</topic><topic>Root-mean-square errors</topic><topic>Terrain</topic><topic>U.S.A</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yilmaz, M</creatorcontrib><creatorcontrib>Uysal, M</creatorcontrib><collection>Istex</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Area (London 1969)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yilmaz, M</au><au>Uysal, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of data reduction algorithms for LiDAR-derived digital terrain model generalisation</atitle><jtitle>Area (London 1969)</jtitle><addtitle>Area</addtitle><date>2016-12</date><risdate>2016</risdate><volume>48</volume><issue>4</issue><spage>521</spage><epage>532</epage><pages>521-532</pages><issn>0004-0894</issn><eissn>1475-4762</eissn><abstract>A digital terrain model (DTM) is a three-dimensional representation of the terrain relief created from discrete points related to each other through their elevations. New technologies such as satellite remote sensing, airborne laser scanning and radar interferometry are efficient methods for constructing high-quality DTMs in a cost-effective manner. The accuracy of a DTM is influenced by a number of factors, including the accuracy, density and spatial distribution of elevation points, the terrain surface characteristics, etc. In this paper, direct comparisons of absolute and relative vertical accuracies are made between data reduction algorithms for the generalisation of DTM extracted from airborne Light Detection and Ranging (LiDAR) data. The absolute vertical accuracies are presented in terms of the mean error (ME), the mean absolute error (MAE) and the root mean square error (RMSE) and the relative vertical accuracies are characterised as per cent slope over Mount St Helens in southwest Washington State. The results show that LiDAR datasets can be reduced to 50 per cent density level by a uniform data reduction algorithm using triangulation with a linear interpolation method for the generalisation of DTM while still maintaining the quality of the original data.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1111/area.12276</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0004-0894
ispartof Area (London 1969), 2016-12, Vol.48 (4), p.521-532
issn 0004-0894
1475-4762
language eng
recordid cdi_proquest_miscellaneous_1884096128
source Jstor Complete Legacy; Wiley Online Library Journals Frontfile Complete
subjects absolute and relative vertical accuracy
Accuracy
Algorithms
Comparative analysis
Construction methods
Data analysis
Data models
Data reduction
Digital
DTM
Geography
LiDAR
Root-mean-square errors
Terrain
U.S.A
title Comparison of data reduction algorithms for LiDAR-derived digital terrain model generalisation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T13%3A37%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20data%20reduction%20algorithms%20for%20LiDAR-derived%20digital%20terrain%20model%20generalisation&rft.jtitle=Area%20(London%201969)&rft.au=Yilmaz,%20M&rft.date=2016-12&rft.volume=48&rft.issue=4&rft.spage=521&rft.epage=532&rft.pages=521-532&rft.issn=0004-0894&rft.eissn=1475-4762&rft_id=info:doi/10.1111/area.12276&rft_dat=%3Cjstor_proqu%3E44131885%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1864527603&rft_id=info:pmid/&rft_jstor_id=44131885&rfr_iscdi=true