Thermostat Influence on the Structural Development and Material Removal during Abrasion of Nanocrystalline Ferrite

We consider a nanomachining process of hard, abrasive particles grinding on the rough surface of a polycrystalline ferritic work piece. Using extensive large-scale molecular dynamics (MD) simulations, we show that the mode of thermostating, i.e., the way that the heat generated through deformation a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2017-04, Vol.9 (15), p.13713-13725
Hauptverfasser: Eder, Stefan J, Cihak-Bayr, Ulrike, Bianchi, Davide, Feldbauer, Gregor, Betz, Gerhard
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13725
container_issue 15
container_start_page 13713
container_title ACS applied materials & interfaces
container_volume 9
creator Eder, Stefan J
Cihak-Bayr, Ulrike
Bianchi, Davide
Feldbauer, Gregor
Betz, Gerhard
description We consider a nanomachining process of hard, abrasive particles grinding on the rough surface of a polycrystalline ferritic work piece. Using extensive large-scale molecular dynamics (MD) simulations, we show that the mode of thermostating, i.e., the way that the heat generated through deformation and friction is removed from the system, has crucial impact on tribological and materials related phenomena. By adopting an electron–phonon coupling approach to parametrize the thermostat of the system, thus including the electronic contribution to the thermal conductivity of iron, we can reproduce the experimentally measured values that yield realistic temperature gradients in the work piece. We compare these results to those obtained by assuming the two extreme cases of only phononic heat conduction and instantaneous removal of the heat generated in the machining interface. Our discussion of the differences between these three cases reveals that although the average shear stress is virtually temperature independent up to a normal pressure of approximately 1 GPa, the grain and chip morphology as well as most relevant quantities depend heavily on the mode of thermostating beyond a normal pressure of 0.4 GPa. These pronounced differences can be explained by the thermally activated processes that guide the reaction of the Fe lattice to the external mechanical and thermal loads caused by nanomachining.
doi_str_mv 10.1021/acsami.7b01237
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1883843873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1883843873</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-6ba8025803a8d8f3c53525c0cebc096a79b013ceb7166cade2247e868a5874d23</originalsourceid><addsrcrecordid>eNp1kElPwzAQhS0EgrJcOSIfEVKLY2dxjlWhgMQiQTlHE2cCqRK7eKnEv8eopTdOM6P53pPeI-Q8YZOE8eQalIOhmxQ1S7go9sgoKdN0LHnG93d7mh6RY-eWjOWCs-yQHHEpcslKOSJ28Yl2MM6Dpw-67QNqhdRo6j-RvnkblA8WenqDa-zNakDtKeiGPoFH28XHKw5mHWcTbKc_6LS24LqoNy19Bm2U_Y7efd9ppHO0tvN4Sg5a6B2ebecJeZ_fLmb348eXu4fZ9HEMosz9OK9BMp5JJkA2shUqExnPFFNYK1bmUJQxs4hXkeS5ggY5TwuUuYRMFmnDxQm53PiurPkK6Hw1dE5h34NGE1yVSClkKmQhIjrZoMoa5yy21cp2A9jvKmHVb8_Vpudq23MUXGy9Qz1gs8P_io3A1QaIwmppgtUx6n9uP5slicY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1883843873</pqid></control><display><type>article</type><title>Thermostat Influence on the Structural Development and Material Removal during Abrasion of Nanocrystalline Ferrite</title><source>ACS Publications</source><creator>Eder, Stefan J ; Cihak-Bayr, Ulrike ; Bianchi, Davide ; Feldbauer, Gregor ; Betz, Gerhard</creator><creatorcontrib>Eder, Stefan J ; Cihak-Bayr, Ulrike ; Bianchi, Davide ; Feldbauer, Gregor ; Betz, Gerhard</creatorcontrib><description>We consider a nanomachining process of hard, abrasive particles grinding on the rough surface of a polycrystalline ferritic work piece. Using extensive large-scale molecular dynamics (MD) simulations, we show that the mode of thermostating, i.e., the way that the heat generated through deformation and friction is removed from the system, has crucial impact on tribological and materials related phenomena. By adopting an electron–phonon coupling approach to parametrize the thermostat of the system, thus including the electronic contribution to the thermal conductivity of iron, we can reproduce the experimentally measured values that yield realistic temperature gradients in the work piece. We compare these results to those obtained by assuming the two extreme cases of only phononic heat conduction and instantaneous removal of the heat generated in the machining interface. Our discussion of the differences between these three cases reveals that although the average shear stress is virtually temperature independent up to a normal pressure of approximately 1 GPa, the grain and chip morphology as well as most relevant quantities depend heavily on the mode of thermostating beyond a normal pressure of 0.4 GPa. These pronounced differences can be explained by the thermally activated processes that guide the reaction of the Fe lattice to the external mechanical and thermal loads caused by nanomachining.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.7b01237</identifier><identifier>PMID: 28368098</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2017-04, Vol.9 (15), p.13713-13725</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-6ba8025803a8d8f3c53525c0cebc096a79b013ceb7166cade2247e868a5874d23</citedby><cites>FETCH-LOGICAL-a396t-6ba8025803a8d8f3c53525c0cebc096a79b013ceb7166cade2247e868a5874d23</cites><orcidid>0000-0002-9327-0450 ; 0000-0002-2902-3076</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.7b01237$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.7b01237$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28368098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eder, Stefan J</creatorcontrib><creatorcontrib>Cihak-Bayr, Ulrike</creatorcontrib><creatorcontrib>Bianchi, Davide</creatorcontrib><creatorcontrib>Feldbauer, Gregor</creatorcontrib><creatorcontrib>Betz, Gerhard</creatorcontrib><title>Thermostat Influence on the Structural Development and Material Removal during Abrasion of Nanocrystalline Ferrite</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>We consider a nanomachining process of hard, abrasive particles grinding on the rough surface of a polycrystalline ferritic work piece. Using extensive large-scale molecular dynamics (MD) simulations, we show that the mode of thermostating, i.e., the way that the heat generated through deformation and friction is removed from the system, has crucial impact on tribological and materials related phenomena. By adopting an electron–phonon coupling approach to parametrize the thermostat of the system, thus including the electronic contribution to the thermal conductivity of iron, we can reproduce the experimentally measured values that yield realistic temperature gradients in the work piece. We compare these results to those obtained by assuming the two extreme cases of only phononic heat conduction and instantaneous removal of the heat generated in the machining interface. Our discussion of the differences between these three cases reveals that although the average shear stress is virtually temperature independent up to a normal pressure of approximately 1 GPa, the grain and chip morphology as well as most relevant quantities depend heavily on the mode of thermostating beyond a normal pressure of 0.4 GPa. These pronounced differences can be explained by the thermally activated processes that guide the reaction of the Fe lattice to the external mechanical and thermal loads caused by nanomachining.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kElPwzAQhS0EgrJcOSIfEVKLY2dxjlWhgMQiQTlHE2cCqRK7eKnEv8eopTdOM6P53pPeI-Q8YZOE8eQalIOhmxQ1S7go9sgoKdN0LHnG93d7mh6RY-eWjOWCs-yQHHEpcslKOSJ28Yl2MM6Dpw-67QNqhdRo6j-RvnkblA8WenqDa-zNakDtKeiGPoFH28XHKw5mHWcTbKc_6LS24LqoNy19Bm2U_Y7efd9ppHO0tvN4Sg5a6B2ebecJeZ_fLmb348eXu4fZ9HEMosz9OK9BMp5JJkA2shUqExnPFFNYK1bmUJQxs4hXkeS5ggY5TwuUuYRMFmnDxQm53PiurPkK6Hw1dE5h34NGE1yVSClkKmQhIjrZoMoa5yy21cp2A9jvKmHVb8_Vpudq23MUXGy9Qz1gs8P_io3A1QaIwmppgtUx6n9uP5slicY</recordid><startdate>20170419</startdate><enddate>20170419</enddate><creator>Eder, Stefan J</creator><creator>Cihak-Bayr, Ulrike</creator><creator>Bianchi, Davide</creator><creator>Feldbauer, Gregor</creator><creator>Betz, Gerhard</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9327-0450</orcidid><orcidid>https://orcid.org/0000-0002-2902-3076</orcidid></search><sort><creationdate>20170419</creationdate><title>Thermostat Influence on the Structural Development and Material Removal during Abrasion of Nanocrystalline Ferrite</title><author>Eder, Stefan J ; Cihak-Bayr, Ulrike ; Bianchi, Davide ; Feldbauer, Gregor ; Betz, Gerhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-6ba8025803a8d8f3c53525c0cebc096a79b013ceb7166cade2247e868a5874d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eder, Stefan J</creatorcontrib><creatorcontrib>Cihak-Bayr, Ulrike</creatorcontrib><creatorcontrib>Bianchi, Davide</creatorcontrib><creatorcontrib>Feldbauer, Gregor</creatorcontrib><creatorcontrib>Betz, Gerhard</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eder, Stefan J</au><au>Cihak-Bayr, Ulrike</au><au>Bianchi, Davide</au><au>Feldbauer, Gregor</au><au>Betz, Gerhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermostat Influence on the Structural Development and Material Removal during Abrasion of Nanocrystalline Ferrite</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2017-04-19</date><risdate>2017</risdate><volume>9</volume><issue>15</issue><spage>13713</spage><epage>13725</epage><pages>13713-13725</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>We consider a nanomachining process of hard, abrasive particles grinding on the rough surface of a polycrystalline ferritic work piece. Using extensive large-scale molecular dynamics (MD) simulations, we show that the mode of thermostating, i.e., the way that the heat generated through deformation and friction is removed from the system, has crucial impact on tribological and materials related phenomena. By adopting an electron–phonon coupling approach to parametrize the thermostat of the system, thus including the electronic contribution to the thermal conductivity of iron, we can reproduce the experimentally measured values that yield realistic temperature gradients in the work piece. We compare these results to those obtained by assuming the two extreme cases of only phononic heat conduction and instantaneous removal of the heat generated in the machining interface. Our discussion of the differences between these three cases reveals that although the average shear stress is virtually temperature independent up to a normal pressure of approximately 1 GPa, the grain and chip morphology as well as most relevant quantities depend heavily on the mode of thermostating beyond a normal pressure of 0.4 GPa. These pronounced differences can be explained by the thermally activated processes that guide the reaction of the Fe lattice to the external mechanical and thermal loads caused by nanomachining.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28368098</pmid><doi>10.1021/acsami.7b01237</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9327-0450</orcidid><orcidid>https://orcid.org/0000-0002-2902-3076</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2017-04, Vol.9 (15), p.13713-13725
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1883843873
source ACS Publications
title Thermostat Influence on the Structural Development and Material Removal during Abrasion of Nanocrystalline Ferrite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T05%3A03%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermostat%20Influence%20on%20the%20Structural%20Development%20and%20Material%20Removal%20during%20Abrasion%20of%20Nanocrystalline%20Ferrite&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Eder,%20Stefan%20J&rft.date=2017-04-19&rft.volume=9&rft.issue=15&rft.spage=13713&rft.epage=13725&rft.pages=13713-13725&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.7b01237&rft_dat=%3Cproquest_cross%3E1883843873%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1883843873&rft_id=info:pmid/28368098&rfr_iscdi=true