Biological oxygen productivity during the last 60,000 years from triple oxygen isotope measurements

The oxygen isotope signature of atmospheric O2 is linked to the isotopic signature of seawater (H2O) through photosynthesis and respiration. Fractionation during these processes is mass dependent, affecting δ17O about half as much as δ18O. An “anomalous” fractionation process, which changes δ17O and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global biogeochemical cycles 2002-09, Vol.16 (3), p.3-1-3-13
Hauptverfasser: Blunier, Thomas, Barnett, Bruce, Bender, Michael L., Hendricks, Melissa B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3-13
container_issue 3
container_start_page 3-1
container_title Global biogeochemical cycles
container_volume 16
creator Blunier, Thomas
Barnett, Bruce
Bender, Michael L.
Hendricks, Melissa B.
description The oxygen isotope signature of atmospheric O2 is linked to the isotopic signature of seawater (H2O) through photosynthesis and respiration. Fractionation during these processes is mass dependent, affecting δ17O about half as much as δ18O. An “anomalous” fractionation process, which changes δ17O and δ18O of O2 about equally, takes place during isotope exchange between O2 and CO2 in the stratosphere. The relative rates of biologic O2 production and stratospheric processing determine the relationship between δ17O and δ18O of O2 in the atmosphere. Variations of this relationship thus allow us to estimate changes in the rate of mass‐dependent O2 production by photosynthesis versus the rate of O2‐CO2 exchange in the stratosphere with about equal fractionations of δ17O and δ18O. In this study we reconstruct total oxygen productivity for the last glacial, the last glacial termination, and the early Holocene from the triple isotope composition of atmospheric oxygen trapped in ice cores. With a box model we estimate that total biogenic productivity was only ∼76–83% of today for the glacial and was probably lower than today during the glacial‐interglacial transition and the early Holocene. Depending on how reduced the oxygen flux from the land biosphere was during the glacial, the oxygen flux from the glacial ocean biosphere was 88–140% of its present value.
doi_str_mv 10.1029/2001GB001460
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18837190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18837190</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4706-6dfbd3f86b40423ad391bbe1e825cae8b09be07262ca678b2557834461002e883</originalsourceid><addsrcrecordid>eNp9kE1P3DAQhq2qSN0CN36AT5xIGX_EcY7dBQISAiRawc1yksniNllvbYeSf0_QthWnXmYuz_Nq5iXkiMEXBrw85QCsWs5DKvhAFqyUMis5lx_JArRWmeJCfSKfY_zxxuR5uSDN0vner11je-pfpjVu6Db4dmySe3Zpou0Y3GZN0xPS3sZEFZwAAJ3Qhki74Aeagtv2-Fd20Se_RTqgjWPAATcpHpC9zvYRD__sffL94vzb6jK7vq2uVl-vMysLmK9ru7oVnVa1BMmFbUXJ6hoZap43FnUNZY1QcMUbqwpd8zwvtJBSMQCOWot9crzLnT_4NWJMZnCxwb63G_RjNGxmClbCDJ7swCb4GAN2ZhvcYMNkGJi3Js37Jmccdvhv1-P0X9ZUy1WRq1nJdoqLCV_-KTb8NKoQRW4ebiqTP1b3Z-LizpyJV5nggzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18837190</pqid></control><display><type>article</type><title>Biological oxygen productivity during the last 60,000 years from triple oxygen isotope measurements</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library (Open Access Collection)</source><creator>Blunier, Thomas ; Barnett, Bruce ; Bender, Michael L. ; Hendricks, Melissa B.</creator><creatorcontrib>Blunier, Thomas ; Barnett, Bruce ; Bender, Michael L. ; Hendricks, Melissa B.</creatorcontrib><description>The oxygen isotope signature of atmospheric O2 is linked to the isotopic signature of seawater (H2O) through photosynthesis and respiration. Fractionation during these processes is mass dependent, affecting δ17O about half as much as δ18O. An “anomalous” fractionation process, which changes δ17O and δ18O of O2 about equally, takes place during isotope exchange between O2 and CO2 in the stratosphere. The relative rates of biologic O2 production and stratospheric processing determine the relationship between δ17O and δ18O of O2 in the atmosphere. Variations of this relationship thus allow us to estimate changes in the rate of mass‐dependent O2 production by photosynthesis versus the rate of O2‐CO2 exchange in the stratosphere with about equal fractionations of δ17O and δ18O. In this study we reconstruct total oxygen productivity for the last glacial, the last glacial termination, and the early Holocene from the triple isotope composition of atmospheric oxygen trapped in ice cores. With a box model we estimate that total biogenic productivity was only ∼76–83% of today for the glacial and was probably lower than today during the glacial‐interglacial transition and the early Holocene. Depending on how reduced the oxygen flux from the land biosphere was during the glacial, the oxygen flux from the glacial ocean biosphere was 88–140% of its present value.</description><identifier>ISSN: 0886-6236</identifier><identifier>EISSN: 1944-9224</identifier><identifier>DOI: 10.1029/2001GB001460</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>GISP2 ; Marine ; oxygen isotopes ; past oxygen productivity ; respiration ; SIPLE ice cores ; stratospheric isotope exchange</subject><ispartof>Global biogeochemical cycles, 2002-09, Vol.16 (3), p.3-1-3-13</ispartof><rights>Copyright 2002 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4706-6dfbd3f86b40423ad391bbe1e825cae8b09be07262ca678b2557834461002e883</citedby><cites>FETCH-LOGICAL-a4706-6dfbd3f86b40423ad391bbe1e825cae8b09be07262ca678b2557834461002e883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2001GB001460$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2001GB001460$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,1434,11519,27929,27930,45579,45580,46414,46473,46838,46897</link.rule.ids></links><search><creatorcontrib>Blunier, Thomas</creatorcontrib><creatorcontrib>Barnett, Bruce</creatorcontrib><creatorcontrib>Bender, Michael L.</creatorcontrib><creatorcontrib>Hendricks, Melissa B.</creatorcontrib><title>Biological oxygen productivity during the last 60,000 years from triple oxygen isotope measurements</title><title>Global biogeochemical cycles</title><addtitle>Global Biogeochem. Cycles</addtitle><description>The oxygen isotope signature of atmospheric O2 is linked to the isotopic signature of seawater (H2O) through photosynthesis and respiration. Fractionation during these processes is mass dependent, affecting δ17O about half as much as δ18O. An “anomalous” fractionation process, which changes δ17O and δ18O of O2 about equally, takes place during isotope exchange between O2 and CO2 in the stratosphere. The relative rates of biologic O2 production and stratospheric processing determine the relationship between δ17O and δ18O of O2 in the atmosphere. Variations of this relationship thus allow us to estimate changes in the rate of mass‐dependent O2 production by photosynthesis versus the rate of O2‐CO2 exchange in the stratosphere with about equal fractionations of δ17O and δ18O. In this study we reconstruct total oxygen productivity for the last glacial, the last glacial termination, and the early Holocene from the triple isotope composition of atmospheric oxygen trapped in ice cores. With a box model we estimate that total biogenic productivity was only ∼76–83% of today for the glacial and was probably lower than today during the glacial‐interglacial transition and the early Holocene. Depending on how reduced the oxygen flux from the land biosphere was during the glacial, the oxygen flux from the glacial ocean biosphere was 88–140% of its present value.</description><subject>GISP2</subject><subject>Marine</subject><subject>oxygen isotopes</subject><subject>past oxygen productivity</subject><subject>respiration</subject><subject>SIPLE ice cores</subject><subject>stratospheric isotope exchange</subject><issn>0886-6236</issn><issn>1944-9224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp9kE1P3DAQhq2qSN0CN36AT5xIGX_EcY7dBQISAiRawc1yksniNllvbYeSf0_QthWnXmYuz_Nq5iXkiMEXBrw85QCsWs5DKvhAFqyUMis5lx_JArRWmeJCfSKfY_zxxuR5uSDN0vner11je-pfpjVu6Db4dmySe3Zpou0Y3GZN0xPS3sZEFZwAAJ3Qhki74Aeagtv2-Fd20Se_RTqgjWPAATcpHpC9zvYRD__sffL94vzb6jK7vq2uVl-vMysLmK9ru7oVnVa1BMmFbUXJ6hoZap43FnUNZY1QcMUbqwpd8zwvtJBSMQCOWot9crzLnT_4NWJMZnCxwb63G_RjNGxmClbCDJ7swCb4GAN2ZhvcYMNkGJi3Js37Jmccdvhv1-P0X9ZUy1WRq1nJdoqLCV_-KTb8NKoQRW4ebiqTP1b3Z-LizpyJV5nggzA</recordid><startdate>200209</startdate><enddate>200209</enddate><creator>Blunier, Thomas</creator><creator>Barnett, Bruce</creator><creator>Bender, Michael L.</creator><creator>Hendricks, Melissa B.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>200209</creationdate><title>Biological oxygen productivity during the last 60,000 years from triple oxygen isotope measurements</title><author>Blunier, Thomas ; Barnett, Bruce ; Bender, Michael L. ; Hendricks, Melissa B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4706-6dfbd3f86b40423ad391bbe1e825cae8b09be07262ca678b2557834461002e883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>GISP2</topic><topic>Marine</topic><topic>oxygen isotopes</topic><topic>past oxygen productivity</topic><topic>respiration</topic><topic>SIPLE ice cores</topic><topic>stratospheric isotope exchange</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blunier, Thomas</creatorcontrib><creatorcontrib>Barnett, Bruce</creatorcontrib><creatorcontrib>Bender, Michael L.</creatorcontrib><creatorcontrib>Hendricks, Melissa B.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Global biogeochemical cycles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blunier, Thomas</au><au>Barnett, Bruce</au><au>Bender, Michael L.</au><au>Hendricks, Melissa B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biological oxygen productivity during the last 60,000 years from triple oxygen isotope measurements</atitle><jtitle>Global biogeochemical cycles</jtitle><addtitle>Global Biogeochem. Cycles</addtitle><date>2002-09</date><risdate>2002</risdate><volume>16</volume><issue>3</issue><spage>3-1</spage><epage>3-13</epage><pages>3-1-3-13</pages><issn>0886-6236</issn><eissn>1944-9224</eissn><abstract>The oxygen isotope signature of atmospheric O2 is linked to the isotopic signature of seawater (H2O) through photosynthesis and respiration. Fractionation during these processes is mass dependent, affecting δ17O about half as much as δ18O. An “anomalous” fractionation process, which changes δ17O and δ18O of O2 about equally, takes place during isotope exchange between O2 and CO2 in the stratosphere. The relative rates of biologic O2 production and stratospheric processing determine the relationship between δ17O and δ18O of O2 in the atmosphere. Variations of this relationship thus allow us to estimate changes in the rate of mass‐dependent O2 production by photosynthesis versus the rate of O2‐CO2 exchange in the stratosphere with about equal fractionations of δ17O and δ18O. In this study we reconstruct total oxygen productivity for the last glacial, the last glacial termination, and the early Holocene from the triple isotope composition of atmospheric oxygen trapped in ice cores. With a box model we estimate that total biogenic productivity was only ∼76–83% of today for the glacial and was probably lower than today during the glacial‐interglacial transition and the early Holocene. Depending on how reduced the oxygen flux from the land biosphere was during the glacial, the oxygen flux from the glacial ocean biosphere was 88–140% of its present value.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2001GB001460</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0886-6236
ispartof Global biogeochemical cycles, 2002-09, Vol.16 (3), p.3-1-3-13
issn 0886-6236
1944-9224
language eng
recordid cdi_proquest_miscellaneous_18837190
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; Wiley Online Library (Open Access Collection)
subjects GISP2
Marine
oxygen isotopes
past oxygen productivity
respiration
SIPLE ice cores
stratospheric isotope exchange
title Biological oxygen productivity during the last 60,000 years from triple oxygen isotope measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T03%3A39%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biological%20oxygen%20productivity%20during%20the%20last%2060,000%20years%20from%20triple%20oxygen%20isotope%20measurements&rft.jtitle=Global%20biogeochemical%20cycles&rft.au=Blunier,%20Thomas&rft.date=2002-09&rft.volume=16&rft.issue=3&rft.spage=3-1&rft.epage=3-13&rft.pages=3-1-3-13&rft.issn=0886-6236&rft.eissn=1944-9224&rft_id=info:doi/10.1029/2001GB001460&rft_dat=%3Cproquest_cross%3E18837190%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18837190&rft_id=info:pmid/&rfr_iscdi=true