Suppression of Tousled-like kinase activity after DNA damage or replication block requires ATM, NBS1 and Chk1

The human Tousled-like kinases 1 and 2 (TLK) have been shown to be active during S phase of the cell cycle. TLK activity is rapidly suppressed by DNA damage and by inhibitors of replication. Here we report that the signal transduction pathway, which leads to transient suppression of TLK activity aft...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2003-09, Vol.22 (38), p.5927-5937
Hauptverfasser: Krause, Darren R, Jonnalagadda, Jyoti C, Gatei, Magtouf H, Sillje, Herman HW, Zhou, Bin-Bing, Nigg, Erich A, Khanna, Kumkum
Format: Artikel
Sprache:eng
Schlagworte:
DNA
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5937
container_issue 38
container_start_page 5927
container_title Oncogene
container_volume 22
creator Krause, Darren R
Jonnalagadda, Jyoti C
Gatei, Magtouf H
Sillje, Herman HW
Zhou, Bin-Bing
Nigg, Erich A
Khanna, Kumkum
description The human Tousled-like kinases 1 and 2 (TLK) have been shown to be active during S phase of the cell cycle. TLK activity is rapidly suppressed by DNA damage and by inhibitors of replication. Here we report that the signal transduction pathway, which leads to transient suppression of TLK activity after the induction of double-strand breaks (DSBs) in the DNA, is dependent on the presence of a functional ataxia-telangiectasia-mutated kinase (ATM). Interestingly, we have discovered that rapid suppression of TLK activity after low doses of ultraviolet (UV) irradiation or aphidicolin-induced replication block is also ATM-dependent. The nature of the signal that triggers ATM-dependent downregulation of TLK activity after UVC and replication block remains unknown, but it is not due exclusively to DSBs in the DNA. We also demonstrate that TLK suppression is dependent on the presence of a functional Nijmegan Breakage Syndrome protein (NBS1). ATM-dependent phosphorylation of NBS1 is required for the suppression of TLK activity, indicating a role for NBS1 as an adaptor or scaffold in the ATM/TLK pathway. ATM does not phosphorylate TLK directly to regulate its activity, but Chk1 does phosphorylate TLK1 GST-fusion proteins in vitro . Using Chk1 siRNAs, we show that Chk1 is essential for the suppression of TLK activity after replication block, but that ATR, Chk2 and BRCA1 are dispensable for TLK suppression. Overall, we propose that ATM activation is not linked solely to DSBs and that ATM participates in initiating signaling pathways in response to replication block and UV-induced DNA damage.
doi_str_mv 10.1038/sj.onc.1206691
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_18826670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A189173937</galeid><sourcerecordid>A189173937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-ee77f1833a16202d196ba59bcd1b15f9afd749317fef1faa36e73ebabafd4bd83</originalsourceid><addsrcrecordid>eNp1kU2P0zAQhiMEYsvClRvIAsGJdO04juNjKZ_Sshy2nKOJMy5uEztrJ0j773HVSkVIKx8szTzvfL1Z9pLRJaO8voq7pXd6yQpaVYo9yhaslFUuhCofZwuqBM1VwYuL7FmMO0qpVLR4ml2wQglBJVtkw-08jgFjtN4Rb8jGz7HHLu_tHsneOohIQE_2j53uCZgJA_l0syIdDLBF4gMJOPZWw3TQt73X-xS5m20qSVabHx_IzcdbRsB1ZP17z55nTwz0EV-c_svs15fPm_W3_Prn1-_r1XWuBa2nHFFKw2rOgVUFLTqmqhaEanXHWiaMAtPJUnEmDRpmAHiFkmMLbUqUbVfzy-z9se4Y_N2McWoGGzX2PThMCzasrouqkjSBb_8Dd34OLs3WFFXJeFELIRP15kGqkFzwsj70XB6hLfTYWGf8FECn1-FgtXdobIqvWK2Y5IrLs0AHH2NA04zBDhDuG0abg7lN3DXJ3OZkbhK8Po0xtwN2Z_zkZgLenQCIGnoTwGkbz5xgNJ1SJO7qyMWUclsM530ebP3qqHAwzQH_aX3M_wVOGcWl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>227353488</pqid></control><display><type>article</type><title>Suppression of Tousled-like kinase activity after DNA damage or replication block requires ATM, NBS1 and Chk1</title><source>MEDLINE</source><source>SpringerNature Journals</source><source>Nature Journals Online</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Krause, Darren R ; Jonnalagadda, Jyoti C ; Gatei, Magtouf H ; Sillje, Herman HW ; Zhou, Bin-Bing ; Nigg, Erich A ; Khanna, Kumkum</creator><creatorcontrib>Krause, Darren R ; Jonnalagadda, Jyoti C ; Gatei, Magtouf H ; Sillje, Herman HW ; Zhou, Bin-Bing ; Nigg, Erich A ; Khanna, Kumkum</creatorcontrib><description>The human Tousled-like kinases 1 and 2 (TLK) have been shown to be active during S phase of the cell cycle. TLK activity is rapidly suppressed by DNA damage and by inhibitors of replication. Here we report that the signal transduction pathway, which leads to transient suppression of TLK activity after the induction of double-strand breaks (DSBs) in the DNA, is dependent on the presence of a functional ataxia-telangiectasia-mutated kinase (ATM). Interestingly, we have discovered that rapid suppression of TLK activity after low doses of ultraviolet (UV) irradiation or aphidicolin-induced replication block is also ATM-dependent. The nature of the signal that triggers ATM-dependent downregulation of TLK activity after UVC and replication block remains unknown, but it is not due exclusively to DSBs in the DNA. We also demonstrate that TLK suppression is dependent on the presence of a functional Nijmegan Breakage Syndrome protein (NBS1). ATM-dependent phosphorylation of NBS1 is required for the suppression of TLK activity, indicating a role for NBS1 as an adaptor or scaffold in the ATM/TLK pathway. ATM does not phosphorylate TLK directly to regulate its activity, but Chk1 does phosphorylate TLK1 GST-fusion proteins in vitro . Using Chk1 siRNAs, we show that Chk1 is essential for the suppression of TLK activity after replication block, but that ATR, Chk2 and BRCA1 are dispensable for TLK suppression. Overall, we propose that ATM activation is not linked solely to DSBs and that ATM participates in initiating signaling pathways in response to replication block and UV-induced DNA damage.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/sj.onc.1206691</identifier><identifier>PMID: 12955071</identifier><identifier>CODEN: ONCNES</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Adaptor proteins ; Aphidicolin ; Aphidicolin - pharmacology ; Apoptosis ; Ataxia ; Ataxia Telangiectasia Mutated Proteins ; Biological and medical sciences ; BRCA1 protein ; Cell Biology ; Cell cycle ; Cell Cycle Proteins - drug effects ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cell Cycle Proteins - radiation effects ; Cell physiology ; Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes ; Cells, Cultured ; Checkpoint Kinase 1 ; CHK1 protein ; CHK2 protein ; Deoxyribonucleic acid ; Diverse techniques ; DNA ; DNA biosynthesis ; DNA damage ; DNA Damage - physiology ; DNA Replication - drug effects ; DNA Replication - radiation effects ; DNA-Binding Proteins ; Dose-Response Relationship, Radiation ; Enzyme Activation - drug effects ; Enzyme Activation - radiation effects ; Fundamental and applied biological sciences. Psychology ; Gamma Rays ; Glutathione Transferase - genetics ; Glutathione Transferase - metabolism ; Human Genetics ; Humans ; Internal Medicine ; Kinases ; Medicine ; Medicine &amp; Public Health ; Molecular and cellular biology ; Nuclear Proteins - drug effects ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Nuclear Proteins - radiation effects ; Oncology ; original-paper ; Phosphorylation ; Protein Kinases - drug effects ; Protein Kinases - genetics ; Protein Kinases - metabolism ; Protein Kinases - radiation effects ; Protein-Serine-Threonine Kinases - drug effects ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - metabolism ; Protein-Serine-Threonine Kinases - radiation effects ; Proteins ; Radiation, Ionizing ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Replication ; RNA, Small Interfering - pharmacology ; S phase ; Serine - metabolism ; Signal transduction ; Signal Transduction - drug effects ; Signal Transduction - radiation effects ; siRNA ; Tumor Suppressor Proteins ; Ultraviolet Rays ; Yeast</subject><ispartof>Oncogene, 2003-09, Vol.22 (38), p.5927-5937</ispartof><rights>Springer Nature Limited 2003</rights><rights>2004 INIST-CNRS</rights><rights>COPYRIGHT 2003 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 4, 2003</rights><rights>Nature Publishing Group 2003.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-ee77f1833a16202d196ba59bcd1b15f9afd749317fef1faa36e73ebabafd4bd83</citedby><cites>FETCH-LOGICAL-c508t-ee77f1833a16202d196ba59bcd1b15f9afd749317fef1faa36e73ebabafd4bd83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/sj.onc.1206691$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/sj.onc.1206691$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,2727,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15101965$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12955071$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krause, Darren R</creatorcontrib><creatorcontrib>Jonnalagadda, Jyoti C</creatorcontrib><creatorcontrib>Gatei, Magtouf H</creatorcontrib><creatorcontrib>Sillje, Herman HW</creatorcontrib><creatorcontrib>Zhou, Bin-Bing</creatorcontrib><creatorcontrib>Nigg, Erich A</creatorcontrib><creatorcontrib>Khanna, Kumkum</creatorcontrib><title>Suppression of Tousled-like kinase activity after DNA damage or replication block requires ATM, NBS1 and Chk1</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>The human Tousled-like kinases 1 and 2 (TLK) have been shown to be active during S phase of the cell cycle. TLK activity is rapidly suppressed by DNA damage and by inhibitors of replication. Here we report that the signal transduction pathway, which leads to transient suppression of TLK activity after the induction of double-strand breaks (DSBs) in the DNA, is dependent on the presence of a functional ataxia-telangiectasia-mutated kinase (ATM). Interestingly, we have discovered that rapid suppression of TLK activity after low doses of ultraviolet (UV) irradiation or aphidicolin-induced replication block is also ATM-dependent. The nature of the signal that triggers ATM-dependent downregulation of TLK activity after UVC and replication block remains unknown, but it is not due exclusively to DSBs in the DNA. We also demonstrate that TLK suppression is dependent on the presence of a functional Nijmegan Breakage Syndrome protein (NBS1). ATM-dependent phosphorylation of NBS1 is required for the suppression of TLK activity, indicating a role for NBS1 as an adaptor or scaffold in the ATM/TLK pathway. ATM does not phosphorylate TLK directly to regulate its activity, but Chk1 does phosphorylate TLK1 GST-fusion proteins in vitro . Using Chk1 siRNAs, we show that Chk1 is essential for the suppression of TLK activity after replication block, but that ATR, Chk2 and BRCA1 are dispensable for TLK suppression. Overall, we propose that ATM activation is not linked solely to DSBs and that ATM participates in initiating signaling pathways in response to replication block and UV-induced DNA damage.</description><subject>Adaptor proteins</subject><subject>Aphidicolin</subject><subject>Aphidicolin - pharmacology</subject><subject>Apoptosis</subject><subject>Ataxia</subject><subject>Ataxia Telangiectasia Mutated Proteins</subject><subject>Biological and medical sciences</subject><subject>BRCA1 protein</subject><subject>Cell Biology</subject><subject>Cell cycle</subject><subject>Cell Cycle Proteins - drug effects</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Cycle Proteins - radiation effects</subject><subject>Cell physiology</subject><subject>Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes</subject><subject>Cells, Cultured</subject><subject>Checkpoint Kinase 1</subject><subject>CHK1 protein</subject><subject>CHK2 protein</subject><subject>Deoxyribonucleic acid</subject><subject>Diverse techniques</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA damage</subject><subject>DNA Damage - physiology</subject><subject>DNA Replication - drug effects</subject><subject>DNA Replication - radiation effects</subject><subject>DNA-Binding Proteins</subject><subject>Dose-Response Relationship, Radiation</subject><subject>Enzyme Activation - drug effects</subject><subject>Enzyme Activation - radiation effects</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gamma Rays</subject><subject>Glutathione Transferase - genetics</subject><subject>Glutathione Transferase - metabolism</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Kinases</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Molecular and cellular biology</subject><subject>Nuclear Proteins - drug effects</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Nuclear Proteins - radiation effects</subject><subject>Oncology</subject><subject>original-paper</subject><subject>Phosphorylation</subject><subject>Protein Kinases - drug effects</subject><subject>Protein Kinases - genetics</subject><subject>Protein Kinases - metabolism</subject><subject>Protein Kinases - radiation effects</subject><subject>Protein-Serine-Threonine Kinases - drug effects</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Protein-Serine-Threonine Kinases - radiation effects</subject><subject>Proteins</subject><subject>Radiation, Ionizing</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Replication</subject><subject>RNA, Small Interfering - pharmacology</subject><subject>S phase</subject><subject>Serine - metabolism</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - radiation effects</subject><subject>siRNA</subject><subject>Tumor Suppressor Proteins</subject><subject>Ultraviolet Rays</subject><subject>Yeast</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kU2P0zAQhiMEYsvClRvIAsGJdO04juNjKZ_Sshy2nKOJMy5uEztrJ0j773HVSkVIKx8szTzvfL1Z9pLRJaO8voq7pXd6yQpaVYo9yhaslFUuhCofZwuqBM1VwYuL7FmMO0qpVLR4ml2wQglBJVtkw-08jgFjtN4Rb8jGz7HHLu_tHsneOohIQE_2j53uCZgJA_l0syIdDLBF4gMJOPZWw3TQt73X-xS5m20qSVabHx_IzcdbRsB1ZP17z55nTwz0EV-c_svs15fPm_W3_Prn1-_r1XWuBa2nHFFKw2rOgVUFLTqmqhaEanXHWiaMAtPJUnEmDRpmAHiFkmMLbUqUbVfzy-z9se4Y_N2McWoGGzX2PThMCzasrouqkjSBb_8Dd34OLs3WFFXJeFELIRP15kGqkFzwsj70XB6hLfTYWGf8FECn1-FgtXdobIqvWK2Y5IrLs0AHH2NA04zBDhDuG0abg7lN3DXJ3OZkbhK8Po0xtwN2Z_zkZgLenQCIGnoTwGkbz5xgNJ1SJO7qyMWUclsM530ebP3qqHAwzQH_aX3M_wVOGcWl</recordid><startdate>20030904</startdate><enddate>20030904</enddate><creator>Krause, Darren R</creator><creator>Jonnalagadda, Jyoti C</creator><creator>Gatei, Magtouf H</creator><creator>Sillje, Herman HW</creator><creator>Zhou, Bin-Bing</creator><creator>Nigg, Erich A</creator><creator>Khanna, Kumkum</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope></search><sort><creationdate>20030904</creationdate><title>Suppression of Tousled-like kinase activity after DNA damage or replication block requires ATM, NBS1 and Chk1</title><author>Krause, Darren R ; Jonnalagadda, Jyoti C ; Gatei, Magtouf H ; Sillje, Herman HW ; Zhou, Bin-Bing ; Nigg, Erich A ; Khanna, Kumkum</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-ee77f1833a16202d196ba59bcd1b15f9afd749317fef1faa36e73ebabafd4bd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Adaptor proteins</topic><topic>Aphidicolin</topic><topic>Aphidicolin - pharmacology</topic><topic>Apoptosis</topic><topic>Ataxia</topic><topic>Ataxia Telangiectasia Mutated Proteins</topic><topic>Biological and medical sciences</topic><topic>BRCA1 protein</topic><topic>Cell Biology</topic><topic>Cell cycle</topic><topic>Cell Cycle Proteins - drug effects</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Cycle Proteins - radiation effects</topic><topic>Cell physiology</topic><topic>Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes</topic><topic>Cells, Cultured</topic><topic>Checkpoint Kinase 1</topic><topic>CHK1 protein</topic><topic>CHK2 protein</topic><topic>Deoxyribonucleic acid</topic><topic>Diverse techniques</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA damage</topic><topic>DNA Damage - physiology</topic><topic>DNA Replication - drug effects</topic><topic>DNA Replication - radiation effects</topic><topic>DNA-Binding Proteins</topic><topic>Dose-Response Relationship, Radiation</topic><topic>Enzyme Activation - drug effects</topic><topic>Enzyme Activation - radiation effects</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gamma Rays</topic><topic>Glutathione Transferase - genetics</topic><topic>Glutathione Transferase - metabolism</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Kinases</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Molecular and cellular biology</topic><topic>Nuclear Proteins - drug effects</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Nuclear Proteins - radiation effects</topic><topic>Oncology</topic><topic>original-paper</topic><topic>Phosphorylation</topic><topic>Protein Kinases - drug effects</topic><topic>Protein Kinases - genetics</topic><topic>Protein Kinases - metabolism</topic><topic>Protein Kinases - radiation effects</topic><topic>Protein-Serine-Threonine Kinases - drug effects</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Protein-Serine-Threonine Kinases - radiation effects</topic><topic>Proteins</topic><topic>Radiation, Ionizing</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Replication</topic><topic>RNA, Small Interfering - pharmacology</topic><topic>S phase</topic><topic>Serine - metabolism</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - radiation effects</topic><topic>siRNA</topic><topic>Tumor Suppressor Proteins</topic><topic>Ultraviolet Rays</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krause, Darren R</creatorcontrib><creatorcontrib>Jonnalagadda, Jyoti C</creatorcontrib><creatorcontrib>Gatei, Magtouf H</creatorcontrib><creatorcontrib>Sillje, Herman HW</creatorcontrib><creatorcontrib>Zhou, Bin-Bing</creatorcontrib><creatorcontrib>Nigg, Erich A</creatorcontrib><creatorcontrib>Khanna, Kumkum</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krause, Darren R</au><au>Jonnalagadda, Jyoti C</au><au>Gatei, Magtouf H</au><au>Sillje, Herman HW</au><au>Zhou, Bin-Bing</au><au>Nigg, Erich A</au><au>Khanna, Kumkum</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suppression of Tousled-like kinase activity after DNA damage or replication block requires ATM, NBS1 and Chk1</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2003-09-04</date><risdate>2003</risdate><volume>22</volume><issue>38</issue><spage>5927</spage><epage>5937</epage><pages>5927-5937</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><coden>ONCNES</coden><abstract>The human Tousled-like kinases 1 and 2 (TLK) have been shown to be active during S phase of the cell cycle. TLK activity is rapidly suppressed by DNA damage and by inhibitors of replication. Here we report that the signal transduction pathway, which leads to transient suppression of TLK activity after the induction of double-strand breaks (DSBs) in the DNA, is dependent on the presence of a functional ataxia-telangiectasia-mutated kinase (ATM). Interestingly, we have discovered that rapid suppression of TLK activity after low doses of ultraviolet (UV) irradiation or aphidicolin-induced replication block is also ATM-dependent. The nature of the signal that triggers ATM-dependent downregulation of TLK activity after UVC and replication block remains unknown, but it is not due exclusively to DSBs in the DNA. We also demonstrate that TLK suppression is dependent on the presence of a functional Nijmegan Breakage Syndrome protein (NBS1). ATM-dependent phosphorylation of NBS1 is required for the suppression of TLK activity, indicating a role for NBS1 as an adaptor or scaffold in the ATM/TLK pathway. ATM does not phosphorylate TLK directly to regulate its activity, but Chk1 does phosphorylate TLK1 GST-fusion proteins in vitro . Using Chk1 siRNAs, we show that Chk1 is essential for the suppression of TLK activity after replication block, but that ATR, Chk2 and BRCA1 are dispensable for TLK suppression. Overall, we propose that ATM activation is not linked solely to DSBs and that ATM participates in initiating signaling pathways in response to replication block and UV-induced DNA damage.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>12955071</pmid><doi>10.1038/sj.onc.1206691</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-9232
ispartof Oncogene, 2003-09, Vol.22 (38), p.5927-5937
issn 0950-9232
1476-5594
language eng
recordid cdi_proquest_miscellaneous_18826670
source MEDLINE; SpringerNature Journals; Nature Journals Online; EZB-FREE-00999 freely available EZB journals
subjects Adaptor proteins
Aphidicolin
Aphidicolin - pharmacology
Apoptosis
Ataxia
Ataxia Telangiectasia Mutated Proteins
Biological and medical sciences
BRCA1 protein
Cell Biology
Cell cycle
Cell Cycle Proteins - drug effects
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Cell Cycle Proteins - radiation effects
Cell physiology
Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes
Cells, Cultured
Checkpoint Kinase 1
CHK1 protein
CHK2 protein
Deoxyribonucleic acid
Diverse techniques
DNA
DNA biosynthesis
DNA damage
DNA Damage - physiology
DNA Replication - drug effects
DNA Replication - radiation effects
DNA-Binding Proteins
Dose-Response Relationship, Radiation
Enzyme Activation - drug effects
Enzyme Activation - radiation effects
Fundamental and applied biological sciences. Psychology
Gamma Rays
Glutathione Transferase - genetics
Glutathione Transferase - metabolism
Human Genetics
Humans
Internal Medicine
Kinases
Medicine
Medicine & Public Health
Molecular and cellular biology
Nuclear Proteins - drug effects
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Nuclear Proteins - radiation effects
Oncology
original-paper
Phosphorylation
Protein Kinases - drug effects
Protein Kinases - genetics
Protein Kinases - metabolism
Protein Kinases - radiation effects
Protein-Serine-Threonine Kinases - drug effects
Protein-Serine-Threonine Kinases - genetics
Protein-Serine-Threonine Kinases - metabolism
Protein-Serine-Threonine Kinases - radiation effects
Proteins
Radiation, Ionizing
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
Replication
RNA, Small Interfering - pharmacology
S phase
Serine - metabolism
Signal transduction
Signal Transduction - drug effects
Signal Transduction - radiation effects
siRNA
Tumor Suppressor Proteins
Ultraviolet Rays
Yeast
title Suppression of Tousled-like kinase activity after DNA damage or replication block requires ATM, NBS1 and Chk1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A49%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suppression%20of%20Tousled-like%20kinase%20activity%20after%20DNA%20damage%20or%20replication%20block%20requires%20ATM,%20NBS1%20and%20Chk1&rft.jtitle=Oncogene&rft.au=Krause,%20Darren%20R&rft.date=2003-09-04&rft.volume=22&rft.issue=38&rft.spage=5927&rft.epage=5937&rft.pages=5927-5937&rft.issn=0950-9232&rft.eissn=1476-5594&rft.coden=ONCNES&rft_id=info:doi/10.1038/sj.onc.1206691&rft_dat=%3Cgale_proqu%3EA189173937%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=227353488&rft_id=info:pmid/12955071&rft_galeid=A189173937&rfr_iscdi=true