Screening of rice mutants with improved saccharification efficiency results in the identification of CONSTITUTIVE PHOTOMORPHOGENIC 1 and GOLD HULL AND INTERNODE 1
To ensure the availability of sustainable energy, considerable effort is underway to utilize lignocellulosic plant biomass as feedstock for the production of biofuels. However, the high cost of degrading plant cell wall components to fermentable sugars (saccharification) has been problematic. One wa...
Gespeichert in:
Veröffentlicht in: | Planta 2017-07, Vol.246 (1), p.61-74 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 74 |
---|---|
container_issue | 1 |
container_start_page | 61 |
container_title | Planta |
container_volume | 246 |
creator | Hirano, Ko Masuda, Reiko Takase, Wakana Morinaka, Yoichi Kawamura, Mayuko Takeuchi, Yoshinobu Takagi, Hiroki Yaegashi, Hiroki Natsume, Satoshi Terauchi, Ryohei Kotake, Toshihisa Matsushita, Yasuyuki Sazuka, Takashi |
description | To ensure the availability of sustainable energy, considerable effort is underway to utilize lignocellulosic plant biomass as feedstock for the production of biofuels. However, the high cost of degrading plant cell wall components to fermentable sugars (saccharification) has been problematic. One way to overcome this barrier is to develop plants possessing cell walls that are amenable to saccharification. In this study, we aimed to identify new molecular factors that influence saccharification efficiency (SE) in rice. By screening 22 rice mutants, we identified two lines, 122 and 108, with improved SE. Reduced xylan and ferulic acid within the cell wall of line 122 were probable reasons of improved SE. Line 108 showed reduced levels of thioglycolic-released lignin; however, the amount of Klason lignin was comparable to the wild-type, indicating that structural changes had occurred in the 108 lignin polymer which resulted in improved SE. Positional cloning revealed that the genes responsible for improved SE in 122 and 108 were rice CONSTITUTIVE PHOTO-MORPHOGENIC 1 (OsCOP1) and GOLD HULL AND INTERNODE 1 (GH1), respectively, which have not been previously reported to influence SE. The screening of mutants for improved SE is an efficient approach to identify novel genes that affect SE, which is relevant in the development of crops as biofuel sources. |
doi_str_mv | 10.1007/s00425-017-2685-9 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1882498631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48726753</jstor_id><sourcerecordid>48726753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-b8d3d616af8fa55ebe776bc06c8de4dee314b8da1e8749c5ae540060bef202a83</originalsourceid><addsrcrecordid>eNp9kc1u1DAURiMEokPhAViALLHpJuCfOHGW1Uw6EykkqM2wjRznpuPRxCl2Aurr8KS4SimIBStf6Z7v2NYXBG8J_kgwTj45jCPKQ0ySkMaCh-mzYEUiRkOKI_E8WGHsZ5wyfha8cu6IsV8mycvgjArGE87SVfDzRlkAo80tGntktQI0zJM0k0M_9HRAeriz43fokJNKHaTVvVZy0qNB0PtRg1H3yIKbTz6hDZoOgHQHZvoDeu-6Km_qvN7X-dcMfdlVdfW5uvbnNivzNSJImg5tq2KDdvuiQJflBuVlnV2X1SZD5HXwopcnB28ez_Ngf5XV611YVNt8fVmEiuNoClvRsS4msexFLzmHFpIkbhWOlegg6gAYiTwjCYgkShWXwCOMY9xCTzGVgp0HF4vX__jbDG5qBu0UnE7SwDi7hghBo1TEjHj0wz_ocZyt8a9rSEoYwSlNY0-RhVJ2dM5C39xZPUh73xDcPBTYLAU2vsDmocAm9Zn3j-a5HaB7SvxuzAN0AZxfmVuwf139H-u7JXR002ifpJFIaOyt7BerlK2s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1913109296</pqid></control><display><type>article</type><title>Screening of rice mutants with improved saccharification efficiency results in the identification of CONSTITUTIVE PHOTOMORPHOGENIC 1 and GOLD HULL AND INTERNODE 1</title><source>MEDLINE</source><source>SpringerNature Journals</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Hirano, Ko ; Masuda, Reiko ; Takase, Wakana ; Morinaka, Yoichi ; Kawamura, Mayuko ; Takeuchi, Yoshinobu ; Takagi, Hiroki ; Yaegashi, Hiroki ; Natsume, Satoshi ; Terauchi, Ryohei ; Kotake, Toshihisa ; Matsushita, Yasuyuki ; Sazuka, Takashi</creator><creatorcontrib>Hirano, Ko ; Masuda, Reiko ; Takase, Wakana ; Morinaka, Yoichi ; Kawamura, Mayuko ; Takeuchi, Yoshinobu ; Takagi, Hiroki ; Yaegashi, Hiroki ; Natsume, Satoshi ; Terauchi, Ryohei ; Kotake, Toshihisa ; Matsushita, Yasuyuki ; Sazuka, Takashi</creatorcontrib><description>To ensure the availability of sustainable energy, considerable effort is underway to utilize lignocellulosic plant biomass as feedstock for the production of biofuels. However, the high cost of degrading plant cell wall components to fermentable sugars (saccharification) has been problematic. One way to overcome this barrier is to develop plants possessing cell walls that are amenable to saccharification. In this study, we aimed to identify new molecular factors that influence saccharification efficiency (SE) in rice. By screening 22 rice mutants, we identified two lines, 122 and 108, with improved SE. Reduced xylan and ferulic acid within the cell wall of line 122 were probable reasons of improved SE. Line 108 showed reduced levels of thioglycolic-released lignin; however, the amount of Klason lignin was comparable to the wild-type, indicating that structural changes had occurred in the 108 lignin polymer which resulted in improved SE. Positional cloning revealed that the genes responsible for improved SE in 122 and 108 were rice CONSTITUTIVE PHOTO-MORPHOGENIC 1 (OsCOP1) and GOLD HULL AND INTERNODE 1 (GH1), respectively, which have not been previously reported to influence SE. The screening of mutants for improved SE is an efficient approach to identify novel genes that affect SE, which is relevant in the development of crops as biofuel sources.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-017-2685-9</identifier><identifier>PMID: 28357539</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Science + Business Media</publisher><subject>Agriculture ; Biofuels ; Biomass ; Biomass energy production ; Biomedical and Life Sciences ; Cell walls ; Cellulose ; Cellulose - metabolism ; Cloning ; Coumaric Acids - metabolism ; Crop development ; Crops ; Degradation ; Ecology ; Efficiency ; Energy consumption ; Ferulic acid ; Forestry ; Fuels ; Genes ; Glucose ; Gold ; Life Sciences ; Lignin ; Lignin - metabolism ; Lignocellulose ; Mutants ; ORIGINAL ARTICLE ; Oryza - genetics ; Oryza - metabolism ; Plant biomass ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Sciences ; Plants (botany) ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - metabolism ; Polymers ; Raw materials ; Renewable energy ; Rice ; Saccharification ; Screening ; Sugar ; Sustainable energy ; Transcription ; Walls ; Xylan</subject><ispartof>Planta, 2017-07, Vol.246 (1), p.61-74</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Planta is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-b8d3d616af8fa55ebe776bc06c8de4dee314b8da1e8749c5ae540060bef202a83</citedby><cites>FETCH-LOGICAL-c504t-b8d3d616af8fa55ebe776bc06c8de4dee314b8da1e8749c5ae540060bef202a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48726753$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48726753$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,41488,42557,51319,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28357539$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hirano, Ko</creatorcontrib><creatorcontrib>Masuda, Reiko</creatorcontrib><creatorcontrib>Takase, Wakana</creatorcontrib><creatorcontrib>Morinaka, Yoichi</creatorcontrib><creatorcontrib>Kawamura, Mayuko</creatorcontrib><creatorcontrib>Takeuchi, Yoshinobu</creatorcontrib><creatorcontrib>Takagi, Hiroki</creatorcontrib><creatorcontrib>Yaegashi, Hiroki</creatorcontrib><creatorcontrib>Natsume, Satoshi</creatorcontrib><creatorcontrib>Terauchi, Ryohei</creatorcontrib><creatorcontrib>Kotake, Toshihisa</creatorcontrib><creatorcontrib>Matsushita, Yasuyuki</creatorcontrib><creatorcontrib>Sazuka, Takashi</creatorcontrib><title>Screening of rice mutants with improved saccharification efficiency results in the identification of CONSTITUTIVE PHOTOMORPHOGENIC 1 and GOLD HULL AND INTERNODE 1</title><title>Planta</title><addtitle>Planta</addtitle><addtitle>Planta</addtitle><description>To ensure the availability of sustainable energy, considerable effort is underway to utilize lignocellulosic plant biomass as feedstock for the production of biofuels. However, the high cost of degrading plant cell wall components to fermentable sugars (saccharification) has been problematic. One way to overcome this barrier is to develop plants possessing cell walls that are amenable to saccharification. In this study, we aimed to identify new molecular factors that influence saccharification efficiency (SE) in rice. By screening 22 rice mutants, we identified two lines, 122 and 108, with improved SE. Reduced xylan and ferulic acid within the cell wall of line 122 were probable reasons of improved SE. Line 108 showed reduced levels of thioglycolic-released lignin; however, the amount of Klason lignin was comparable to the wild-type, indicating that structural changes had occurred in the 108 lignin polymer which resulted in improved SE. Positional cloning revealed that the genes responsible for improved SE in 122 and 108 were rice CONSTITUTIVE PHOTO-MORPHOGENIC 1 (OsCOP1) and GOLD HULL AND INTERNODE 1 (GH1), respectively, which have not been previously reported to influence SE. The screening of mutants for improved SE is an efficient approach to identify novel genes that affect SE, which is relevant in the development of crops as biofuel sources.</description><subject>Agriculture</subject><subject>Biofuels</subject><subject>Biomass</subject><subject>Biomass energy production</subject><subject>Biomedical and Life Sciences</subject><subject>Cell walls</subject><subject>Cellulose</subject><subject>Cellulose - metabolism</subject><subject>Cloning</subject><subject>Coumaric Acids - metabolism</subject><subject>Crop development</subject><subject>Crops</subject><subject>Degradation</subject><subject>Ecology</subject><subject>Efficiency</subject><subject>Energy consumption</subject><subject>Ferulic acid</subject><subject>Forestry</subject><subject>Fuels</subject><subject>Genes</subject><subject>Glucose</subject><subject>Gold</subject><subject>Life Sciences</subject><subject>Lignin</subject><subject>Lignin - metabolism</subject><subject>Lignocellulose</subject><subject>Mutants</subject><subject>ORIGINAL ARTICLE</subject><subject>Oryza - genetics</subject><subject>Oryza - metabolism</subject><subject>Plant biomass</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Sciences</subject><subject>Plants (botany)</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Polymers</subject><subject>Raw materials</subject><subject>Renewable energy</subject><subject>Rice</subject><subject>Saccharification</subject><subject>Screening</subject><subject>Sugar</subject><subject>Sustainable energy</subject><subject>Transcription</subject><subject>Walls</subject><subject>Xylan</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1u1DAURiMEokPhAViALLHpJuCfOHGW1Uw6EykkqM2wjRznpuPRxCl2Aurr8KS4SimIBStf6Z7v2NYXBG8J_kgwTj45jCPKQ0ySkMaCh-mzYEUiRkOKI_E8WGHsZ5wyfha8cu6IsV8mycvgjArGE87SVfDzRlkAo80tGntktQI0zJM0k0M_9HRAeriz43fokJNKHaTVvVZy0qNB0PtRg1H3yIKbTz6hDZoOgHQHZvoDeu-6Km_qvN7X-dcMfdlVdfW5uvbnNivzNSJImg5tq2KDdvuiQJflBuVlnV2X1SZD5HXwopcnB28ez_Ngf5XV611YVNt8fVmEiuNoClvRsS4msexFLzmHFpIkbhWOlegg6gAYiTwjCYgkShWXwCOMY9xCTzGVgp0HF4vX__jbDG5qBu0UnE7SwDi7hghBo1TEjHj0wz_ocZyt8a9rSEoYwSlNY0-RhVJ2dM5C39xZPUh73xDcPBTYLAU2vsDmocAm9Zn3j-a5HaB7SvxuzAN0AZxfmVuwf139H-u7JXR002ifpJFIaOyt7BerlK2s</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Hirano, Ko</creator><creator>Masuda, Reiko</creator><creator>Takase, Wakana</creator><creator>Morinaka, Yoichi</creator><creator>Kawamura, Mayuko</creator><creator>Takeuchi, Yoshinobu</creator><creator>Takagi, Hiroki</creator><creator>Yaegashi, Hiroki</creator><creator>Natsume, Satoshi</creator><creator>Terauchi, Ryohei</creator><creator>Kotake, Toshihisa</creator><creator>Matsushita, Yasuyuki</creator><creator>Sazuka, Takashi</creator><general>Springer Science + Business Media</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20170701</creationdate><title>Screening of rice mutants with improved saccharification efficiency results in the identification of CONSTITUTIVE PHOTOMORPHOGENIC 1 and GOLD HULL AND INTERNODE 1</title><author>Hirano, Ko ; Masuda, Reiko ; Takase, Wakana ; Morinaka, Yoichi ; Kawamura, Mayuko ; Takeuchi, Yoshinobu ; Takagi, Hiroki ; Yaegashi, Hiroki ; Natsume, Satoshi ; Terauchi, Ryohei ; Kotake, Toshihisa ; Matsushita, Yasuyuki ; Sazuka, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-b8d3d616af8fa55ebe776bc06c8de4dee314b8da1e8749c5ae540060bef202a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agriculture</topic><topic>Biofuels</topic><topic>Biomass</topic><topic>Biomass energy production</topic><topic>Biomedical and Life Sciences</topic><topic>Cell walls</topic><topic>Cellulose</topic><topic>Cellulose - metabolism</topic><topic>Cloning</topic><topic>Coumaric Acids - metabolism</topic><topic>Crop development</topic><topic>Crops</topic><topic>Degradation</topic><topic>Ecology</topic><topic>Efficiency</topic><topic>Energy consumption</topic><topic>Ferulic acid</topic><topic>Forestry</topic><topic>Fuels</topic><topic>Genes</topic><topic>Glucose</topic><topic>Gold</topic><topic>Life Sciences</topic><topic>Lignin</topic><topic>Lignin - metabolism</topic><topic>Lignocellulose</topic><topic>Mutants</topic><topic>ORIGINAL ARTICLE</topic><topic>Oryza - genetics</topic><topic>Oryza - metabolism</topic><topic>Plant biomass</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Sciences</topic><topic>Plants (botany)</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Polymers</topic><topic>Raw materials</topic><topic>Renewable energy</topic><topic>Rice</topic><topic>Saccharification</topic><topic>Screening</topic><topic>Sugar</topic><topic>Sustainable energy</topic><topic>Transcription</topic><topic>Walls</topic><topic>Xylan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirano, Ko</creatorcontrib><creatorcontrib>Masuda, Reiko</creatorcontrib><creatorcontrib>Takase, Wakana</creatorcontrib><creatorcontrib>Morinaka, Yoichi</creatorcontrib><creatorcontrib>Kawamura, Mayuko</creatorcontrib><creatorcontrib>Takeuchi, Yoshinobu</creatorcontrib><creatorcontrib>Takagi, Hiroki</creatorcontrib><creatorcontrib>Yaegashi, Hiroki</creatorcontrib><creatorcontrib>Natsume, Satoshi</creatorcontrib><creatorcontrib>Terauchi, Ryohei</creatorcontrib><creatorcontrib>Kotake, Toshihisa</creatorcontrib><creatorcontrib>Matsushita, Yasuyuki</creatorcontrib><creatorcontrib>Sazuka, Takashi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirano, Ko</au><au>Masuda, Reiko</au><au>Takase, Wakana</au><au>Morinaka, Yoichi</au><au>Kawamura, Mayuko</au><au>Takeuchi, Yoshinobu</au><au>Takagi, Hiroki</au><au>Yaegashi, Hiroki</au><au>Natsume, Satoshi</au><au>Terauchi, Ryohei</au><au>Kotake, Toshihisa</au><au>Matsushita, Yasuyuki</au><au>Sazuka, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Screening of rice mutants with improved saccharification efficiency results in the identification of CONSTITUTIVE PHOTOMORPHOGENIC 1 and GOLD HULL AND INTERNODE 1</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><addtitle>Planta</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>246</volume><issue>1</issue><spage>61</spage><epage>74</epage><pages>61-74</pages><issn>0032-0935</issn><eissn>1432-2048</eissn><abstract>To ensure the availability of sustainable energy, considerable effort is underway to utilize lignocellulosic plant biomass as feedstock for the production of biofuels. However, the high cost of degrading plant cell wall components to fermentable sugars (saccharification) has been problematic. One way to overcome this barrier is to develop plants possessing cell walls that are amenable to saccharification. In this study, we aimed to identify new molecular factors that influence saccharification efficiency (SE) in rice. By screening 22 rice mutants, we identified two lines, 122 and 108, with improved SE. Reduced xylan and ferulic acid within the cell wall of line 122 were probable reasons of improved SE. Line 108 showed reduced levels of thioglycolic-released lignin; however, the amount of Klason lignin was comparable to the wild-type, indicating that structural changes had occurred in the 108 lignin polymer which resulted in improved SE. Positional cloning revealed that the genes responsible for improved SE in 122 and 108 were rice CONSTITUTIVE PHOTO-MORPHOGENIC 1 (OsCOP1) and GOLD HULL AND INTERNODE 1 (GH1), respectively, which have not been previously reported to influence SE. The screening of mutants for improved SE is an efficient approach to identify novel genes that affect SE, which is relevant in the development of crops as biofuel sources.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Science + Business Media</pub><pmid>28357539</pmid><doi>10.1007/s00425-017-2685-9</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0935 |
ispartof | Planta, 2017-07, Vol.246 (1), p.61-74 |
issn | 0032-0935 1432-2048 |
language | eng |
recordid | cdi_proquest_miscellaneous_1882498631 |
source | MEDLINE; SpringerNature Journals; JSTOR Archive Collection A-Z Listing |
subjects | Agriculture Biofuels Biomass Biomass energy production Biomedical and Life Sciences Cell walls Cellulose Cellulose - metabolism Cloning Coumaric Acids - metabolism Crop development Crops Degradation Ecology Efficiency Energy consumption Ferulic acid Forestry Fuels Genes Glucose Gold Life Sciences Lignin Lignin - metabolism Lignocellulose Mutants ORIGINAL ARTICLE Oryza - genetics Oryza - metabolism Plant biomass Plant Proteins - genetics Plant Proteins - metabolism Plant Sciences Plants (botany) Plants, Genetically Modified - genetics Plants, Genetically Modified - metabolism Polymers Raw materials Renewable energy Rice Saccharification Screening Sugar Sustainable energy Transcription Walls Xylan |
title | Screening of rice mutants with improved saccharification efficiency results in the identification of CONSTITUTIVE PHOTOMORPHOGENIC 1 and GOLD HULL AND INTERNODE 1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A13%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Screening%20of%20rice%20mutants%20with%20improved%20saccharification%20efficiency%20results%20in%20the%20identification%20of%20CONSTITUTIVE%20PHOTOMORPHOGENIC%201%20and%20GOLD%20HULL%20AND%20INTERNODE%201&rft.jtitle=Planta&rft.au=Hirano,%20Ko&rft.date=2017-07-01&rft.volume=246&rft.issue=1&rft.spage=61&rft.epage=74&rft.pages=61-74&rft.issn=0032-0935&rft.eissn=1432-2048&rft_id=info:doi/10.1007/s00425-017-2685-9&rft_dat=%3Cjstor_proqu%3E48726753%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1913109296&rft_id=info:pmid/28357539&rft_jstor_id=48726753&rfr_iscdi=true |