Peroxynitrite Activates the NLRP3 Inflammasome Cascade in SOD1(G93A) Mouse Model of Amyotrophic Lateral Sclerosis

Neuroinflammation, characterized by the appearance of reactive microglial and astroglial cells, is one of the several pathogenic mechanisms of amyotrophic lateral sclerosis (ALS), a fast-progressing and fatal neurodegenerative disease. Cerebrospinal fluid and spinal cord of ALS patients and SOD1 mut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular neurobiology 2018-03, Vol.55 (3), p.2350-2361
Hauptverfasser: Bellezza, Ilaria, Grottelli, Silvia, Costanzi, Egidia, Scarpelli, Paolo, Pigna, Eva, Morozzi, Giulio, Mezzasoma, Letizia, Peirce, Matthew J., Moresi, Viviana, Adamo, Sergio, Minelli, Alba
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2361
container_issue 3
container_start_page 2350
container_title Molecular neurobiology
container_volume 55
creator Bellezza, Ilaria
Grottelli, Silvia
Costanzi, Egidia
Scarpelli, Paolo
Pigna, Eva
Morozzi, Giulio
Mezzasoma, Letizia
Peirce, Matthew J.
Moresi, Viviana
Adamo, Sergio
Minelli, Alba
description Neuroinflammation, characterized by the appearance of reactive microglial and astroglial cells, is one of the several pathogenic mechanisms of amyotrophic lateral sclerosis (ALS), a fast-progressing and fatal neurodegenerative disease. Cerebrospinal fluid and spinal cord of ALS patients and SOD1 mutant mice show high concentrations of IL-1β. This interleukin, expressed as an inactive precursor, undergoes a proteolytic maturation by caspase1, whose activation, in turn, depends on inflammasomes. Whether and how inflammasome is activated in ALS models is still to be clarified. The mechanism of inflammasome activation was studied in murine microglial cells overexpressing hSOD1(G93A) and verified in the spinal cord of hSOD1(G93A) mice. Murine microglial hSOD1(G93A) cells express all the inflammasome components and LPS activates caspase1 leading to an increase in the secretion of IL-1β. By activating NF-κB, LPS increases ROS and NO levels that spontaneously react to form peroxynitrite, thus leading to protein nitration. Reduction in peroxynitrite levels results in a decrease in caspase1 activity. Protein nitration and caspase1 activity are concomitantly increased in the spinal cord of pre-symptomatic SOD1(G93A) mice. Oxidative/nitrosative stress induces peroxynitrite formation that may be a key trigger of caspase1/inflammasome activation. Peroxynitrite formation may play a critical role in inflammasome activation and might be exploited as potential therapeutic target for ALS.
doi_str_mv 10.1007/s12035-017-0502-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1882498486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1882498486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-e28dd9579cf204c6bf0501f0e42eb3e5e3e3a5e8e56fc697c92c7640fcc0edfa3</originalsourceid><addsrcrecordid>eNp1kU1vEzEQhi1ERUPhB3BBlriUw5YZe71rH6MApVJKK9qeLcc7plvtR2pvUPLvcZV-SEhcZg7zzDvz6mXsA8IJAtRfEgqQqgCsC1Agiu0rNkOlTIGoxWs2A21kUVelPmRvU7oDEAKhfsMOhZaq1qBm7P6S4rjdDe0U24n43E_tHzdR4tMt8Z_LX5eSnw2hc33v0tgTX7jkXUO8HfjVxVc8PjVy_pmfj5tEuTbU8THweb8bpziub1vPl1ktuo5f-S5fSm16xw6C6xK9f-xH7Ob7t-vFj2J5cXq2mC8LX6KaChK6aYyqjQ8CSl-tQraIAagUtJKkSJJ0ijSpKvjK1N4In61C8B6oCU4eseO97jqO9xtKk-3b5Knr3ED5XYtai9LoUlcZ_fQPejdu4pC_swIQ0RgpRKZwT_nsI0UKdh3b3sWdRbAPedh9HjbnYR_ysNu88_FRebPqqXneeAogA2IPpDwaflN8Of1_1b_vDZVs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2011199322</pqid></control><display><type>article</type><title>Peroxynitrite Activates the NLRP3 Inflammasome Cascade in SOD1(G93A) Mouse Model of Amyotrophic Lateral Sclerosis</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Bellezza, Ilaria ; Grottelli, Silvia ; Costanzi, Egidia ; Scarpelli, Paolo ; Pigna, Eva ; Morozzi, Giulio ; Mezzasoma, Letizia ; Peirce, Matthew J. ; Moresi, Viviana ; Adamo, Sergio ; Minelli, Alba</creator><creatorcontrib>Bellezza, Ilaria ; Grottelli, Silvia ; Costanzi, Egidia ; Scarpelli, Paolo ; Pigna, Eva ; Morozzi, Giulio ; Mezzasoma, Letizia ; Peirce, Matthew J. ; Moresi, Viviana ; Adamo, Sergio ; Minelli, Alba</creatorcontrib><description>Neuroinflammation, characterized by the appearance of reactive microglial and astroglial cells, is one of the several pathogenic mechanisms of amyotrophic lateral sclerosis (ALS), a fast-progressing and fatal neurodegenerative disease. Cerebrospinal fluid and spinal cord of ALS patients and SOD1 mutant mice show high concentrations of IL-1β. This interleukin, expressed as an inactive precursor, undergoes a proteolytic maturation by caspase1, whose activation, in turn, depends on inflammasomes. Whether and how inflammasome is activated in ALS models is still to be clarified. The mechanism of inflammasome activation was studied in murine microglial cells overexpressing hSOD1(G93A) and verified in the spinal cord of hSOD1(G93A) mice. Murine microglial hSOD1(G93A) cells express all the inflammasome components and LPS activates caspase1 leading to an increase in the secretion of IL-1β. By activating NF-κB, LPS increases ROS and NO levels that spontaneously react to form peroxynitrite, thus leading to protein nitration. Reduction in peroxynitrite levels results in a decrease in caspase1 activity. Protein nitration and caspase1 activity are concomitantly increased in the spinal cord of pre-symptomatic SOD1(G93A) mice. Oxidative/nitrosative stress induces peroxynitrite formation that may be a key trigger of caspase1/inflammasome activation. Peroxynitrite formation may play a critical role in inflammasome activation and might be exploited as potential therapeutic target for ALS.</description><identifier>ISSN: 0893-7648</identifier><identifier>EISSN: 1559-1182</identifier><identifier>DOI: 10.1007/s12035-017-0502-x</identifier><identifier>PMID: 28357805</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Amyotrophic lateral sclerosis ; Amyotrophic Lateral Sclerosis - genetics ; Amyotrophic Lateral Sclerosis - metabolism ; Animal models ; Animals ; Astrocytes ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Cell Line, Transformed ; Cerebrospinal fluid ; Disease Models, Animal ; Female ; IL-1β ; Inflammasomes ; Inflammation ; Lipopolysaccharides ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Microglial cells ; Neurobiology ; Neurology ; Neurosciences ; NF-κB protein ; Nitration ; NLR Family, Pyrin Domain-Containing 3 Protein - genetics ; NLR Family, Pyrin Domain-Containing 3 Protein - metabolism ; Peroxynitrite ; Peroxynitrous Acid - metabolism ; Proteolysis ; Reactive oxygen species ; Rodents ; Spinal cord ; Superoxide dismutase ; Superoxide Dismutase-1 - genetics ; Superoxide Dismutase-1 - metabolism ; Therapeutic applications</subject><ispartof>Molecular neurobiology, 2018-03, Vol.55 (3), p.2350-2361</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Molecular Neurobiology is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-e28dd9579cf204c6bf0501f0e42eb3e5e3e3a5e8e56fc697c92c7640fcc0edfa3</citedby><cites>FETCH-LOGICAL-c415t-e28dd9579cf204c6bf0501f0e42eb3e5e3e3a5e8e56fc697c92c7640fcc0edfa3</cites><orcidid>0000-0002-8106-1600</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12035-017-0502-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12035-017-0502-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28357805$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bellezza, Ilaria</creatorcontrib><creatorcontrib>Grottelli, Silvia</creatorcontrib><creatorcontrib>Costanzi, Egidia</creatorcontrib><creatorcontrib>Scarpelli, Paolo</creatorcontrib><creatorcontrib>Pigna, Eva</creatorcontrib><creatorcontrib>Morozzi, Giulio</creatorcontrib><creatorcontrib>Mezzasoma, Letizia</creatorcontrib><creatorcontrib>Peirce, Matthew J.</creatorcontrib><creatorcontrib>Moresi, Viviana</creatorcontrib><creatorcontrib>Adamo, Sergio</creatorcontrib><creatorcontrib>Minelli, Alba</creatorcontrib><title>Peroxynitrite Activates the NLRP3 Inflammasome Cascade in SOD1(G93A) Mouse Model of Amyotrophic Lateral Sclerosis</title><title>Molecular neurobiology</title><addtitle>Mol Neurobiol</addtitle><addtitle>Mol Neurobiol</addtitle><description>Neuroinflammation, characterized by the appearance of reactive microglial and astroglial cells, is one of the several pathogenic mechanisms of amyotrophic lateral sclerosis (ALS), a fast-progressing and fatal neurodegenerative disease. Cerebrospinal fluid and spinal cord of ALS patients and SOD1 mutant mice show high concentrations of IL-1β. This interleukin, expressed as an inactive precursor, undergoes a proteolytic maturation by caspase1, whose activation, in turn, depends on inflammasomes. Whether and how inflammasome is activated in ALS models is still to be clarified. The mechanism of inflammasome activation was studied in murine microglial cells overexpressing hSOD1(G93A) and verified in the spinal cord of hSOD1(G93A) mice. Murine microglial hSOD1(G93A) cells express all the inflammasome components and LPS activates caspase1 leading to an increase in the secretion of IL-1β. By activating NF-κB, LPS increases ROS and NO levels that spontaneously react to form peroxynitrite, thus leading to protein nitration. Reduction in peroxynitrite levels results in a decrease in caspase1 activity. Protein nitration and caspase1 activity are concomitantly increased in the spinal cord of pre-symptomatic SOD1(G93A) mice. Oxidative/nitrosative stress induces peroxynitrite formation that may be a key trigger of caspase1/inflammasome activation. Peroxynitrite formation may play a critical role in inflammasome activation and might be exploited as potential therapeutic target for ALS.</description><subject>Amyotrophic lateral sclerosis</subject><subject>Amyotrophic Lateral Sclerosis - genetics</subject><subject>Amyotrophic Lateral Sclerosis - metabolism</subject><subject>Animal models</subject><subject>Animals</subject><subject>Astrocytes</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Cell Line, Transformed</subject><subject>Cerebrospinal fluid</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>IL-1β</subject><subject>Inflammasomes</subject><subject>Inflammation</subject><subject>Lipopolysaccharides</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Microglial cells</subject><subject>Neurobiology</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>NF-κB protein</subject><subject>Nitration</subject><subject>NLR Family, Pyrin Domain-Containing 3 Protein - genetics</subject><subject>NLR Family, Pyrin Domain-Containing 3 Protein - metabolism</subject><subject>Peroxynitrite</subject><subject>Peroxynitrous Acid - metabolism</subject><subject>Proteolysis</subject><subject>Reactive oxygen species</subject><subject>Rodents</subject><subject>Spinal cord</subject><subject>Superoxide dismutase</subject><subject>Superoxide Dismutase-1 - genetics</subject><subject>Superoxide Dismutase-1 - metabolism</subject><subject>Therapeutic applications</subject><issn>0893-7648</issn><issn>1559-1182</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kU1vEzEQhi1ERUPhB3BBlriUw5YZe71rH6MApVJKK9qeLcc7plvtR2pvUPLvcZV-SEhcZg7zzDvz6mXsA8IJAtRfEgqQqgCsC1Agiu0rNkOlTIGoxWs2A21kUVelPmRvU7oDEAKhfsMOhZaq1qBm7P6S4rjdDe0U24n43E_tHzdR4tMt8Z_LX5eSnw2hc33v0tgTX7jkXUO8HfjVxVc8PjVy_pmfj5tEuTbU8THweb8bpziub1vPl1ktuo5f-S5fSm16xw6C6xK9f-xH7Ob7t-vFj2J5cXq2mC8LX6KaChK6aYyqjQ8CSl-tQraIAagUtJKkSJJ0ijSpKvjK1N4In61C8B6oCU4eseO97jqO9xtKk-3b5Knr3ED5XYtai9LoUlcZ_fQPejdu4pC_swIQ0RgpRKZwT_nsI0UKdh3b3sWdRbAPedh9HjbnYR_ysNu88_FRebPqqXneeAogA2IPpDwaflN8Of1_1b_vDZVs</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Bellezza, Ilaria</creator><creator>Grottelli, Silvia</creator><creator>Costanzi, Egidia</creator><creator>Scarpelli, Paolo</creator><creator>Pigna, Eva</creator><creator>Morozzi, Giulio</creator><creator>Mezzasoma, Letizia</creator><creator>Peirce, Matthew J.</creator><creator>Moresi, Viviana</creator><creator>Adamo, Sergio</creator><creator>Minelli, Alba</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8106-1600</orcidid></search><sort><creationdate>20180301</creationdate><title>Peroxynitrite Activates the NLRP3 Inflammasome Cascade in SOD1(G93A) Mouse Model of Amyotrophic Lateral Sclerosis</title><author>Bellezza, Ilaria ; Grottelli, Silvia ; Costanzi, Egidia ; Scarpelli, Paolo ; Pigna, Eva ; Morozzi, Giulio ; Mezzasoma, Letizia ; Peirce, Matthew J. ; Moresi, Viviana ; Adamo, Sergio ; Minelli, Alba</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-e28dd9579cf204c6bf0501f0e42eb3e5e3e3a5e8e56fc697c92c7640fcc0edfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amyotrophic lateral sclerosis</topic><topic>Amyotrophic Lateral Sclerosis - genetics</topic><topic>Amyotrophic Lateral Sclerosis - metabolism</topic><topic>Animal models</topic><topic>Animals</topic><topic>Astrocytes</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Cell Line, Transformed</topic><topic>Cerebrospinal fluid</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>IL-1β</topic><topic>Inflammasomes</topic><topic>Inflammation</topic><topic>Lipopolysaccharides</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Microglial cells</topic><topic>Neurobiology</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>NF-κB protein</topic><topic>Nitration</topic><topic>NLR Family, Pyrin Domain-Containing 3 Protein - genetics</topic><topic>NLR Family, Pyrin Domain-Containing 3 Protein - metabolism</topic><topic>Peroxynitrite</topic><topic>Peroxynitrous Acid - metabolism</topic><topic>Proteolysis</topic><topic>Reactive oxygen species</topic><topic>Rodents</topic><topic>Spinal cord</topic><topic>Superoxide dismutase</topic><topic>Superoxide Dismutase-1 - genetics</topic><topic>Superoxide Dismutase-1 - metabolism</topic><topic>Therapeutic applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bellezza, Ilaria</creatorcontrib><creatorcontrib>Grottelli, Silvia</creatorcontrib><creatorcontrib>Costanzi, Egidia</creatorcontrib><creatorcontrib>Scarpelli, Paolo</creatorcontrib><creatorcontrib>Pigna, Eva</creatorcontrib><creatorcontrib>Morozzi, Giulio</creatorcontrib><creatorcontrib>Mezzasoma, Letizia</creatorcontrib><creatorcontrib>Peirce, Matthew J.</creatorcontrib><creatorcontrib>Moresi, Viviana</creatorcontrib><creatorcontrib>Adamo, Sergio</creatorcontrib><creatorcontrib>Minelli, Alba</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database (ProQuest)</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bellezza, Ilaria</au><au>Grottelli, Silvia</au><au>Costanzi, Egidia</au><au>Scarpelli, Paolo</au><au>Pigna, Eva</au><au>Morozzi, Giulio</au><au>Mezzasoma, Letizia</au><au>Peirce, Matthew J.</au><au>Moresi, Viviana</au><au>Adamo, Sergio</au><au>Minelli, Alba</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Peroxynitrite Activates the NLRP3 Inflammasome Cascade in SOD1(G93A) Mouse Model of Amyotrophic Lateral Sclerosis</atitle><jtitle>Molecular neurobiology</jtitle><stitle>Mol Neurobiol</stitle><addtitle>Mol Neurobiol</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>55</volume><issue>3</issue><spage>2350</spage><epage>2361</epage><pages>2350-2361</pages><issn>0893-7648</issn><eissn>1559-1182</eissn><abstract>Neuroinflammation, characterized by the appearance of reactive microglial and astroglial cells, is one of the several pathogenic mechanisms of amyotrophic lateral sclerosis (ALS), a fast-progressing and fatal neurodegenerative disease. Cerebrospinal fluid and spinal cord of ALS patients and SOD1 mutant mice show high concentrations of IL-1β. This interleukin, expressed as an inactive precursor, undergoes a proteolytic maturation by caspase1, whose activation, in turn, depends on inflammasomes. Whether and how inflammasome is activated in ALS models is still to be clarified. The mechanism of inflammasome activation was studied in murine microglial cells overexpressing hSOD1(G93A) and verified in the spinal cord of hSOD1(G93A) mice. Murine microglial hSOD1(G93A) cells express all the inflammasome components and LPS activates caspase1 leading to an increase in the secretion of IL-1β. By activating NF-κB, LPS increases ROS and NO levels that spontaneously react to form peroxynitrite, thus leading to protein nitration. Reduction in peroxynitrite levels results in a decrease in caspase1 activity. Protein nitration and caspase1 activity are concomitantly increased in the spinal cord of pre-symptomatic SOD1(G93A) mice. Oxidative/nitrosative stress induces peroxynitrite formation that may be a key trigger of caspase1/inflammasome activation. Peroxynitrite formation may play a critical role in inflammasome activation and might be exploited as potential therapeutic target for ALS.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>28357805</pmid><doi>10.1007/s12035-017-0502-x</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8106-1600</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0893-7648
ispartof Molecular neurobiology, 2018-03, Vol.55 (3), p.2350-2361
issn 0893-7648
1559-1182
language eng
recordid cdi_proquest_miscellaneous_1882498486
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Amyotrophic lateral sclerosis
Amyotrophic Lateral Sclerosis - genetics
Amyotrophic Lateral Sclerosis - metabolism
Animal models
Animals
Astrocytes
Biomedical and Life Sciences
Biomedicine
Cell Biology
Cell Line, Transformed
Cerebrospinal fluid
Disease Models, Animal
Female
IL-1β
Inflammasomes
Inflammation
Lipopolysaccharides
Mice
Mice, Inbred C57BL
Mice, Transgenic
Microglial cells
Neurobiology
Neurology
Neurosciences
NF-κB protein
Nitration
NLR Family, Pyrin Domain-Containing 3 Protein - genetics
NLR Family, Pyrin Domain-Containing 3 Protein - metabolism
Peroxynitrite
Peroxynitrous Acid - metabolism
Proteolysis
Reactive oxygen species
Rodents
Spinal cord
Superoxide dismutase
Superoxide Dismutase-1 - genetics
Superoxide Dismutase-1 - metabolism
Therapeutic applications
title Peroxynitrite Activates the NLRP3 Inflammasome Cascade in SOD1(G93A) Mouse Model of Amyotrophic Lateral Sclerosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T02%3A19%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Peroxynitrite%20Activates%20the%20NLRP3%20Inflammasome%20Cascade%20in%20SOD1(G93A)%20Mouse%20Model%20of%20Amyotrophic%20Lateral%20Sclerosis&rft.jtitle=Molecular%20neurobiology&rft.au=Bellezza,%20Ilaria&rft.date=2018-03-01&rft.volume=55&rft.issue=3&rft.spage=2350&rft.epage=2361&rft.pages=2350-2361&rft.issn=0893-7648&rft.eissn=1559-1182&rft_id=info:doi/10.1007/s12035-017-0502-x&rft_dat=%3Cproquest_cross%3E1882498486%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2011199322&rft_id=info:pmid/28357805&rfr_iscdi=true