Collective helicity switching of a DNA–coat assembly
A virus-like artificial structure responds to variations in pH by switching helicity. Hierarchical assemblies of biomolecular subunits can carry out versatile tasks at the cellular level with remarkable spatial and temporal precision 1 , 2 . As an example, the collective motion and mutual cooperatio...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2017-07, Vol.12 (6), p.551-556 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 556 |
---|---|
container_issue | 6 |
container_start_page | 551 |
container_title | Nature nanotechnology |
container_volume | 12 |
creator | Kim, Yongju Li, Huichang He, Ying Chen, Xi Ma, Xiaoteng Lee, Myongsoo |
description | A virus-like artificial structure responds to variations in pH by switching helicity.
Hierarchical assemblies of biomolecular subunits can carry out versatile tasks at the cellular level with remarkable spatial and temporal precision
1
,
2
. As an example, the collective motion and mutual cooperation between complex protein machines mediate essential functions for life, such as replication
3
, synthesis
4
, degradation
5
, repair
6
and transport
7
. Nucleic acid molecules are far less dynamic than proteins and need to bind to specific proteins to form hierarchical structures. The simplest example of these nucleic acid-based structures is provided by a rod-shaped tobacco mosaic virus, which consists of genetic material surrounded by coat proteins
8
. Inspired by the complexity and hierarchical assembly of viruses, a great deal of effort has been devoted to design similarly constructed artificial viruses
9
,
10
. However, such a wrapping approach makes nucleic acid dynamics insensitive to environmental changes. This limitation generally restricts, for example, the amplification of the conformational dynamics between the right-handed B form to the left-handed Z form of double-stranded deoxyribonucleic acid (DNA)
11
,
12
. Here we report a virus-like hierarchical assembly in which the native DNA and a synthetic coat undergo repeated collective helicity switching triggered by pH change under physiological conditions. We also show that this collective helicity inversion occurs during translocation of the DNA–coat assembly into intracellular compartments. Translating DNA conformational dynamics into a higher level of hierarchical dynamics may provide an approach to create DNA-based nanomachines. |
doi_str_mv | 10.1038/nnano.2017.42 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1881774261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1917965455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-1843ee7e35af793e9fc915a2ac0581446264b466a7dabf3bad126cc2a912c92a3</originalsourceid><addsrcrecordid>eNptkD1PwzAQhi0EoqUwsqJILCwJ8bc9VuVTqmCB2XJcp02VxCVOQN34D_xDfgkuKRVCTHfSPXrv7gHgFKYJTLG4rGtduwSlkCcE7YEh5ETEGEu6v-sFH4Aj75dpSpFE5BAMkMCEEUqHgE1cWVrTFq82WtiyMEW7jvxb0ZpFUc8jl0c6unoYf75_GKfbSHtvq6xcH4ODXJfenmzrCDzfXD9N7uLp4-39ZDyNDUGsjaEg2FpuMdU5l9jK3EhINdImpQISwhAjGWFM85nOcpzpGUTMGKQlREYijUfgos9dNe6ls75VVeGNLUtdW9d5BYWAnIddMKDnf9Cl65o6XKeghFwyGh4OVNxTpnHeNzZXq6aodLNWMFUboepbqNoIVQQF_myb2mWVne3oH4MBSHrAh1E9t82vtf8mfgH0zoCP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917965455</pqid></control><display><type>article</type><title>Collective helicity switching of a DNA–coat assembly</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kim, Yongju ; Li, Huichang ; He, Ying ; Chen, Xi ; Ma, Xiaoteng ; Lee, Myongsoo</creator><creatorcontrib>Kim, Yongju ; Li, Huichang ; He, Ying ; Chen, Xi ; Ma, Xiaoteng ; Lee, Myongsoo</creatorcontrib><description>A virus-like artificial structure responds to variations in pH by switching helicity.
Hierarchical assemblies of biomolecular subunits can carry out versatile tasks at the cellular level with remarkable spatial and temporal precision
1
,
2
. As an example, the collective motion and mutual cooperation between complex protein machines mediate essential functions for life, such as replication
3
, synthesis
4
, degradation
5
, repair
6
and transport
7
. Nucleic acid molecules are far less dynamic than proteins and need to bind to specific proteins to form hierarchical structures. The simplest example of these nucleic acid-based structures is provided by a rod-shaped tobacco mosaic virus, which consists of genetic material surrounded by coat proteins
8
. Inspired by the complexity and hierarchical assembly of viruses, a great deal of effort has been devoted to design similarly constructed artificial viruses
9
,
10
. However, such a wrapping approach makes nucleic acid dynamics insensitive to environmental changes. This limitation generally restricts, for example, the amplification of the conformational dynamics between the right-handed B form to the left-handed Z form of double-stranded deoxyribonucleic acid (DNA)
11
,
12
. Here we report a virus-like hierarchical assembly in which the native DNA and a synthetic coat undergo repeated collective helicity switching triggered by pH change under physiological conditions. We also show that this collective helicity inversion occurs during translocation of the DNA–coat assembly into intracellular compartments. Translating DNA conformational dynamics into a higher level of hierarchical dynamics may provide an approach to create DNA-based nanomachines.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/nnano.2017.42</identifier><identifier>PMID: 28346455</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/131 ; 140/133 ; 147/143 ; 147/3 ; 639/638/541 ; 639/925/357/341 ; 639/925/926/1050 ; Amplification ; Animals ; Assemblies ; Assembly ; Biodegradation ; Chemical synthesis ; Circular Dichroism ; Coated Materials, Biocompatible - chemistry ; Coating ; Compartments ; Complexity ; Cooperativity ; Deoxyribonucleic acid ; DNA ; Environmental changes ; Handedness ; HeLa Cells ; Helicity ; Humans ; Hydrogen-Ion Concentration ; letter ; Materials Science ; Microscopy, Electron, Transmission ; Nanotechnology ; Nanotechnology and Microengineering ; Nucleic Acid Conformation ; Proteins ; Pyridinium Compounds - blood ; Replication ; Salmon ; Structural hierarchy ; Switching ; Tobacco ; Translocation ; Viruses</subject><ispartof>Nature nanotechnology, 2017-07, Vol.12 (6), p.551-556</ispartof><rights>Springer Nature Limited 2017</rights><rights>Copyright Nature Publishing Group Jun 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-1843ee7e35af793e9fc915a2ac0581446264b466a7dabf3bad126cc2a912c92a3</citedby><cites>FETCH-LOGICAL-c426t-1843ee7e35af793e9fc915a2ac0581446264b466a7dabf3bad126cc2a912c92a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nnano.2017.42$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nnano.2017.42$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28346455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Yongju</creatorcontrib><creatorcontrib>Li, Huichang</creatorcontrib><creatorcontrib>He, Ying</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Ma, Xiaoteng</creatorcontrib><creatorcontrib>Lee, Myongsoo</creatorcontrib><title>Collective helicity switching of a DNA–coat assembly</title><title>Nature nanotechnology</title><addtitle>Nature Nanotech</addtitle><addtitle>Nat Nanotechnol</addtitle><description>A virus-like artificial structure responds to variations in pH by switching helicity.
Hierarchical assemblies of biomolecular subunits can carry out versatile tasks at the cellular level with remarkable spatial and temporal precision
1
,
2
. As an example, the collective motion and mutual cooperation between complex protein machines mediate essential functions for life, such as replication
3
, synthesis
4
, degradation
5
, repair
6
and transport
7
. Nucleic acid molecules are far less dynamic than proteins and need to bind to specific proteins to form hierarchical structures. The simplest example of these nucleic acid-based structures is provided by a rod-shaped tobacco mosaic virus, which consists of genetic material surrounded by coat proteins
8
. Inspired by the complexity and hierarchical assembly of viruses, a great deal of effort has been devoted to design similarly constructed artificial viruses
9
,
10
. However, such a wrapping approach makes nucleic acid dynamics insensitive to environmental changes. This limitation generally restricts, for example, the amplification of the conformational dynamics between the right-handed B form to the left-handed Z form of double-stranded deoxyribonucleic acid (DNA)
11
,
12
. Here we report a virus-like hierarchical assembly in which the native DNA and a synthetic coat undergo repeated collective helicity switching triggered by pH change under physiological conditions. We also show that this collective helicity inversion occurs during translocation of the DNA–coat assembly into intracellular compartments. Translating DNA conformational dynamics into a higher level of hierarchical dynamics may provide an approach to create DNA-based nanomachines.</description><subject>140/131</subject><subject>140/133</subject><subject>147/143</subject><subject>147/3</subject><subject>639/638/541</subject><subject>639/925/357/341</subject><subject>639/925/926/1050</subject><subject>Amplification</subject><subject>Animals</subject><subject>Assemblies</subject><subject>Assembly</subject><subject>Biodegradation</subject><subject>Chemical synthesis</subject><subject>Circular Dichroism</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Coating</subject><subject>Compartments</subject><subject>Complexity</subject><subject>Cooperativity</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Environmental changes</subject><subject>Handedness</subject><subject>HeLa Cells</subject><subject>Helicity</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>letter</subject><subject>Materials Science</subject><subject>Microscopy, Electron, Transmission</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Nucleic Acid Conformation</subject><subject>Proteins</subject><subject>Pyridinium Compounds - blood</subject><subject>Replication</subject><subject>Salmon</subject><subject>Structural hierarchy</subject><subject>Switching</subject><subject>Tobacco</subject><subject>Translocation</subject><subject>Viruses</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkD1PwzAQhi0EoqUwsqJILCwJ8bc9VuVTqmCB2XJcp02VxCVOQN34D_xDfgkuKRVCTHfSPXrv7gHgFKYJTLG4rGtduwSlkCcE7YEh5ETEGEu6v-sFH4Aj75dpSpFE5BAMkMCEEUqHgE1cWVrTFq82WtiyMEW7jvxb0ZpFUc8jl0c6unoYf75_GKfbSHtvq6xcH4ODXJfenmzrCDzfXD9N7uLp4-39ZDyNDUGsjaEg2FpuMdU5l9jK3EhINdImpQISwhAjGWFM85nOcpzpGUTMGKQlREYijUfgos9dNe6ls75VVeGNLUtdW9d5BYWAnIddMKDnf9Cl65o6XKeghFwyGh4OVNxTpnHeNzZXq6aodLNWMFUboepbqNoIVQQF_myb2mWVne3oH4MBSHrAh1E9t82vtf8mfgH0zoCP</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Kim, Yongju</creator><creator>Li, Huichang</creator><creator>He, Ying</creator><creator>Chen, Xi</creator><creator>Ma, Xiaoteng</creator><creator>Lee, Myongsoo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>201707</creationdate><title>Collective helicity switching of a DNA–coat assembly</title><author>Kim, Yongju ; Li, Huichang ; He, Ying ; Chen, Xi ; Ma, Xiaoteng ; Lee, Myongsoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-1843ee7e35af793e9fc915a2ac0581446264b466a7dabf3bad126cc2a912c92a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>140/131</topic><topic>140/133</topic><topic>147/143</topic><topic>147/3</topic><topic>639/638/541</topic><topic>639/925/357/341</topic><topic>639/925/926/1050</topic><topic>Amplification</topic><topic>Animals</topic><topic>Assemblies</topic><topic>Assembly</topic><topic>Biodegradation</topic><topic>Chemical synthesis</topic><topic>Circular Dichroism</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Coating</topic><topic>Compartments</topic><topic>Complexity</topic><topic>Cooperativity</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Environmental changes</topic><topic>Handedness</topic><topic>HeLa Cells</topic><topic>Helicity</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>letter</topic><topic>Materials Science</topic><topic>Microscopy, Electron, Transmission</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Nucleic Acid Conformation</topic><topic>Proteins</topic><topic>Pyridinium Compounds - blood</topic><topic>Replication</topic><topic>Salmon</topic><topic>Structural hierarchy</topic><topic>Switching</topic><topic>Tobacco</topic><topic>Translocation</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yongju</creatorcontrib><creatorcontrib>Li, Huichang</creatorcontrib><creatorcontrib>He, Ying</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Ma, Xiaoteng</creatorcontrib><creatorcontrib>Lee, Myongsoo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Yongju</au><au>Li, Huichang</au><au>He, Ying</au><au>Chen, Xi</au><au>Ma, Xiaoteng</au><au>Lee, Myongsoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collective helicity switching of a DNA–coat assembly</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nature Nanotech</stitle><addtitle>Nat Nanotechnol</addtitle><date>2017-07</date><risdate>2017</risdate><volume>12</volume><issue>6</issue><spage>551</spage><epage>556</epage><pages>551-556</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>A virus-like artificial structure responds to variations in pH by switching helicity.
Hierarchical assemblies of biomolecular subunits can carry out versatile tasks at the cellular level with remarkable spatial and temporal precision
1
,
2
. As an example, the collective motion and mutual cooperation between complex protein machines mediate essential functions for life, such as replication
3
, synthesis
4
, degradation
5
, repair
6
and transport
7
. Nucleic acid molecules are far less dynamic than proteins and need to bind to specific proteins to form hierarchical structures. The simplest example of these nucleic acid-based structures is provided by a rod-shaped tobacco mosaic virus, which consists of genetic material surrounded by coat proteins
8
. Inspired by the complexity and hierarchical assembly of viruses, a great deal of effort has been devoted to design similarly constructed artificial viruses
9
,
10
. However, such a wrapping approach makes nucleic acid dynamics insensitive to environmental changes. This limitation generally restricts, for example, the amplification of the conformational dynamics between the right-handed B form to the left-handed Z form of double-stranded deoxyribonucleic acid (DNA)
11
,
12
. Here we report a virus-like hierarchical assembly in which the native DNA and a synthetic coat undergo repeated collective helicity switching triggered by pH change under physiological conditions. We also show that this collective helicity inversion occurs during translocation of the DNA–coat assembly into intracellular compartments. Translating DNA conformational dynamics into a higher level of hierarchical dynamics may provide an approach to create DNA-based nanomachines.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28346455</pmid><doi>10.1038/nnano.2017.42</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-3387 |
ispartof | Nature nanotechnology, 2017-07, Vol.12 (6), p.551-556 |
issn | 1748-3387 1748-3395 |
language | eng |
recordid | cdi_proquest_miscellaneous_1881774261 |
source | MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 140/131 140/133 147/143 147/3 639/638/541 639/925/357/341 639/925/926/1050 Amplification Animals Assemblies Assembly Biodegradation Chemical synthesis Circular Dichroism Coated Materials, Biocompatible - chemistry Coating Compartments Complexity Cooperativity Deoxyribonucleic acid DNA Environmental changes Handedness HeLa Cells Helicity Humans Hydrogen-Ion Concentration letter Materials Science Microscopy, Electron, Transmission Nanotechnology Nanotechnology and Microengineering Nucleic Acid Conformation Proteins Pyridinium Compounds - blood Replication Salmon Structural hierarchy Switching Tobacco Translocation Viruses |
title | Collective helicity switching of a DNA–coat assembly |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A56%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collective%20helicity%20switching%20of%20a%20DNA%E2%80%93coat%20assembly&rft.jtitle=Nature%20nanotechnology&rft.au=Kim,%20Yongju&rft.date=2017-07&rft.volume=12&rft.issue=6&rft.spage=551&rft.epage=556&rft.pages=551-556&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/nnano.2017.42&rft_dat=%3Cproquest_cross%3E1917965455%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1917965455&rft_id=info:pmid/28346455&rfr_iscdi=true |