Collective helicity switching of a DNA–coat assembly

A virus-like artificial structure responds to variations in pH by switching helicity. Hierarchical assemblies of biomolecular subunits can carry out versatile tasks at the cellular level with remarkable spatial and temporal precision 1 , 2 . As an example, the collective motion and mutual cooperatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2017-07, Vol.12 (6), p.551-556
Hauptverfasser: Kim, Yongju, Li, Huichang, He, Ying, Chen, Xi, Ma, Xiaoteng, Lee, Myongsoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 556
container_issue 6
container_start_page 551
container_title Nature nanotechnology
container_volume 12
creator Kim, Yongju
Li, Huichang
He, Ying
Chen, Xi
Ma, Xiaoteng
Lee, Myongsoo
description A virus-like artificial structure responds to variations in pH by switching helicity. Hierarchical assemblies of biomolecular subunits can carry out versatile tasks at the cellular level with remarkable spatial and temporal precision 1 , 2 . As an example, the collective motion and mutual cooperation between complex protein machines mediate essential functions for life, such as replication 3 , synthesis 4 , degradation 5 , repair 6 and transport 7 . Nucleic acid molecules are far less dynamic than proteins and need to bind to specific proteins to form hierarchical structures. The simplest example of these nucleic acid-based structures is provided by a rod-shaped tobacco mosaic virus, which consists of genetic material surrounded by coat proteins 8 . Inspired by the complexity and hierarchical assembly of viruses, a great deal of effort has been devoted to design similarly constructed artificial viruses 9 , 10 . However, such a wrapping approach makes nucleic acid dynamics insensitive to environmental changes. This limitation generally restricts, for example, the amplification of the conformational dynamics between the right-handed B form to the left-handed Z form of double-stranded deoxyribonucleic acid (DNA) 11 , 12 . Here we report a virus-like hierarchical assembly in which the native DNA and a synthetic coat undergo repeated collective helicity switching triggered by pH change under physiological conditions. We also show that this collective helicity inversion occurs during translocation of the DNA–coat assembly into intracellular compartments. Translating DNA conformational dynamics into a higher level of hierarchical dynamics may provide an approach to create DNA-based nanomachines.
doi_str_mv 10.1038/nnano.2017.42
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1881774261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1917965455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-1843ee7e35af793e9fc915a2ac0581446264b466a7dabf3bad126cc2a912c92a3</originalsourceid><addsrcrecordid>eNptkD1PwzAQhi0EoqUwsqJILCwJ8bc9VuVTqmCB2XJcp02VxCVOQN34D_xDfgkuKRVCTHfSPXrv7gHgFKYJTLG4rGtduwSlkCcE7YEh5ETEGEu6v-sFH4Aj75dpSpFE5BAMkMCEEUqHgE1cWVrTFq82WtiyMEW7jvxb0ZpFUc8jl0c6unoYf75_GKfbSHtvq6xcH4ODXJfenmzrCDzfXD9N7uLp4-39ZDyNDUGsjaEg2FpuMdU5l9jK3EhINdImpQISwhAjGWFM85nOcpzpGUTMGKQlREYijUfgos9dNe6ls75VVeGNLUtdW9d5BYWAnIddMKDnf9Cl65o6XKeghFwyGh4OVNxTpnHeNzZXq6aodLNWMFUboepbqNoIVQQF_myb2mWVne3oH4MBSHrAh1E9t82vtf8mfgH0zoCP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917965455</pqid></control><display><type>article</type><title>Collective helicity switching of a DNA–coat assembly</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kim, Yongju ; Li, Huichang ; He, Ying ; Chen, Xi ; Ma, Xiaoteng ; Lee, Myongsoo</creator><creatorcontrib>Kim, Yongju ; Li, Huichang ; He, Ying ; Chen, Xi ; Ma, Xiaoteng ; Lee, Myongsoo</creatorcontrib><description>A virus-like artificial structure responds to variations in pH by switching helicity. Hierarchical assemblies of biomolecular subunits can carry out versatile tasks at the cellular level with remarkable spatial and temporal precision 1 , 2 . As an example, the collective motion and mutual cooperation between complex protein machines mediate essential functions for life, such as replication 3 , synthesis 4 , degradation 5 , repair 6 and transport 7 . Nucleic acid molecules are far less dynamic than proteins and need to bind to specific proteins to form hierarchical structures. The simplest example of these nucleic acid-based structures is provided by a rod-shaped tobacco mosaic virus, which consists of genetic material surrounded by coat proteins 8 . Inspired by the complexity and hierarchical assembly of viruses, a great deal of effort has been devoted to design similarly constructed artificial viruses 9 , 10 . However, such a wrapping approach makes nucleic acid dynamics insensitive to environmental changes. This limitation generally restricts, for example, the amplification of the conformational dynamics between the right-handed B form to the left-handed Z form of double-stranded deoxyribonucleic acid (DNA) 11 , 12 . Here we report a virus-like hierarchical assembly in which the native DNA and a synthetic coat undergo repeated collective helicity switching triggered by pH change under physiological conditions. We also show that this collective helicity inversion occurs during translocation of the DNA–coat assembly into intracellular compartments. Translating DNA conformational dynamics into a higher level of hierarchical dynamics may provide an approach to create DNA-based nanomachines.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/nnano.2017.42</identifier><identifier>PMID: 28346455</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/131 ; 140/133 ; 147/143 ; 147/3 ; 639/638/541 ; 639/925/357/341 ; 639/925/926/1050 ; Amplification ; Animals ; Assemblies ; Assembly ; Biodegradation ; Chemical synthesis ; Circular Dichroism ; Coated Materials, Biocompatible - chemistry ; Coating ; Compartments ; Complexity ; Cooperativity ; Deoxyribonucleic acid ; DNA ; Environmental changes ; Handedness ; HeLa Cells ; Helicity ; Humans ; Hydrogen-Ion Concentration ; letter ; Materials Science ; Microscopy, Electron, Transmission ; Nanotechnology ; Nanotechnology and Microengineering ; Nucleic Acid Conformation ; Proteins ; Pyridinium Compounds - blood ; Replication ; Salmon ; Structural hierarchy ; Switching ; Tobacco ; Translocation ; Viruses</subject><ispartof>Nature nanotechnology, 2017-07, Vol.12 (6), p.551-556</ispartof><rights>Springer Nature Limited 2017</rights><rights>Copyright Nature Publishing Group Jun 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-1843ee7e35af793e9fc915a2ac0581446264b466a7dabf3bad126cc2a912c92a3</citedby><cites>FETCH-LOGICAL-c426t-1843ee7e35af793e9fc915a2ac0581446264b466a7dabf3bad126cc2a912c92a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nnano.2017.42$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nnano.2017.42$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28346455$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Yongju</creatorcontrib><creatorcontrib>Li, Huichang</creatorcontrib><creatorcontrib>He, Ying</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Ma, Xiaoteng</creatorcontrib><creatorcontrib>Lee, Myongsoo</creatorcontrib><title>Collective helicity switching of a DNA–coat assembly</title><title>Nature nanotechnology</title><addtitle>Nature Nanotech</addtitle><addtitle>Nat Nanotechnol</addtitle><description>A virus-like artificial structure responds to variations in pH by switching helicity. Hierarchical assemblies of biomolecular subunits can carry out versatile tasks at the cellular level with remarkable spatial and temporal precision 1 , 2 . As an example, the collective motion and mutual cooperation between complex protein machines mediate essential functions for life, such as replication 3 , synthesis 4 , degradation 5 , repair 6 and transport 7 . Nucleic acid molecules are far less dynamic than proteins and need to bind to specific proteins to form hierarchical structures. The simplest example of these nucleic acid-based structures is provided by a rod-shaped tobacco mosaic virus, which consists of genetic material surrounded by coat proteins 8 . Inspired by the complexity and hierarchical assembly of viruses, a great deal of effort has been devoted to design similarly constructed artificial viruses 9 , 10 . However, such a wrapping approach makes nucleic acid dynamics insensitive to environmental changes. This limitation generally restricts, for example, the amplification of the conformational dynamics between the right-handed B form to the left-handed Z form of double-stranded deoxyribonucleic acid (DNA) 11 , 12 . Here we report a virus-like hierarchical assembly in which the native DNA and a synthetic coat undergo repeated collective helicity switching triggered by pH change under physiological conditions. We also show that this collective helicity inversion occurs during translocation of the DNA–coat assembly into intracellular compartments. Translating DNA conformational dynamics into a higher level of hierarchical dynamics may provide an approach to create DNA-based nanomachines.</description><subject>140/131</subject><subject>140/133</subject><subject>147/143</subject><subject>147/3</subject><subject>639/638/541</subject><subject>639/925/357/341</subject><subject>639/925/926/1050</subject><subject>Amplification</subject><subject>Animals</subject><subject>Assemblies</subject><subject>Assembly</subject><subject>Biodegradation</subject><subject>Chemical synthesis</subject><subject>Circular Dichroism</subject><subject>Coated Materials, Biocompatible - chemistry</subject><subject>Coating</subject><subject>Compartments</subject><subject>Complexity</subject><subject>Cooperativity</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Environmental changes</subject><subject>Handedness</subject><subject>HeLa Cells</subject><subject>Helicity</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>letter</subject><subject>Materials Science</subject><subject>Microscopy, Electron, Transmission</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Nucleic Acid Conformation</subject><subject>Proteins</subject><subject>Pyridinium Compounds - blood</subject><subject>Replication</subject><subject>Salmon</subject><subject>Structural hierarchy</subject><subject>Switching</subject><subject>Tobacco</subject><subject>Translocation</subject><subject>Viruses</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkD1PwzAQhi0EoqUwsqJILCwJ8bc9VuVTqmCB2XJcp02VxCVOQN34D_xDfgkuKRVCTHfSPXrv7gHgFKYJTLG4rGtduwSlkCcE7YEh5ETEGEu6v-sFH4Aj75dpSpFE5BAMkMCEEUqHgE1cWVrTFq82WtiyMEW7jvxb0ZpFUc8jl0c6unoYf75_GKfbSHtvq6xcH4ODXJfenmzrCDzfXD9N7uLp4-39ZDyNDUGsjaEg2FpuMdU5l9jK3EhINdImpQISwhAjGWFM85nOcpzpGUTMGKQlREYijUfgos9dNe6ls75VVeGNLUtdW9d5BYWAnIddMKDnf9Cl65o6XKeghFwyGh4OVNxTpnHeNzZXq6aodLNWMFUboepbqNoIVQQF_myb2mWVne3oH4MBSHrAh1E9t82vtf8mfgH0zoCP</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Kim, Yongju</creator><creator>Li, Huichang</creator><creator>He, Ying</creator><creator>Chen, Xi</creator><creator>Ma, Xiaoteng</creator><creator>Lee, Myongsoo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>201707</creationdate><title>Collective helicity switching of a DNA–coat assembly</title><author>Kim, Yongju ; Li, Huichang ; He, Ying ; Chen, Xi ; Ma, Xiaoteng ; Lee, Myongsoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-1843ee7e35af793e9fc915a2ac0581446264b466a7dabf3bad126cc2a912c92a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>140/131</topic><topic>140/133</topic><topic>147/143</topic><topic>147/3</topic><topic>639/638/541</topic><topic>639/925/357/341</topic><topic>639/925/926/1050</topic><topic>Amplification</topic><topic>Animals</topic><topic>Assemblies</topic><topic>Assembly</topic><topic>Biodegradation</topic><topic>Chemical synthesis</topic><topic>Circular Dichroism</topic><topic>Coated Materials, Biocompatible - chemistry</topic><topic>Coating</topic><topic>Compartments</topic><topic>Complexity</topic><topic>Cooperativity</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Environmental changes</topic><topic>Handedness</topic><topic>HeLa Cells</topic><topic>Helicity</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>letter</topic><topic>Materials Science</topic><topic>Microscopy, Electron, Transmission</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Nucleic Acid Conformation</topic><topic>Proteins</topic><topic>Pyridinium Compounds - blood</topic><topic>Replication</topic><topic>Salmon</topic><topic>Structural hierarchy</topic><topic>Switching</topic><topic>Tobacco</topic><topic>Translocation</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yongju</creatorcontrib><creatorcontrib>Li, Huichang</creatorcontrib><creatorcontrib>He, Ying</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Ma, Xiaoteng</creatorcontrib><creatorcontrib>Lee, Myongsoo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Yongju</au><au>Li, Huichang</au><au>He, Ying</au><au>Chen, Xi</au><au>Ma, Xiaoteng</au><au>Lee, Myongsoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collective helicity switching of a DNA–coat assembly</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nature Nanotech</stitle><addtitle>Nat Nanotechnol</addtitle><date>2017-07</date><risdate>2017</risdate><volume>12</volume><issue>6</issue><spage>551</spage><epage>556</epage><pages>551-556</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>A virus-like artificial structure responds to variations in pH by switching helicity. Hierarchical assemblies of biomolecular subunits can carry out versatile tasks at the cellular level with remarkable spatial and temporal precision 1 , 2 . As an example, the collective motion and mutual cooperation between complex protein machines mediate essential functions for life, such as replication 3 , synthesis 4 , degradation 5 , repair 6 and transport 7 . Nucleic acid molecules are far less dynamic than proteins and need to bind to specific proteins to form hierarchical structures. The simplest example of these nucleic acid-based structures is provided by a rod-shaped tobacco mosaic virus, which consists of genetic material surrounded by coat proteins 8 . Inspired by the complexity and hierarchical assembly of viruses, a great deal of effort has been devoted to design similarly constructed artificial viruses 9 , 10 . However, such a wrapping approach makes nucleic acid dynamics insensitive to environmental changes. This limitation generally restricts, for example, the amplification of the conformational dynamics between the right-handed B form to the left-handed Z form of double-stranded deoxyribonucleic acid (DNA) 11 , 12 . Here we report a virus-like hierarchical assembly in which the native DNA and a synthetic coat undergo repeated collective helicity switching triggered by pH change under physiological conditions. We also show that this collective helicity inversion occurs during translocation of the DNA–coat assembly into intracellular compartments. Translating DNA conformational dynamics into a higher level of hierarchical dynamics may provide an approach to create DNA-based nanomachines.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28346455</pmid><doi>10.1038/nnano.2017.42</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2017-07, Vol.12 (6), p.551-556
issn 1748-3387
1748-3395
language eng
recordid cdi_proquest_miscellaneous_1881774261
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 140/131
140/133
147/143
147/3
639/638/541
639/925/357/341
639/925/926/1050
Amplification
Animals
Assemblies
Assembly
Biodegradation
Chemical synthesis
Circular Dichroism
Coated Materials, Biocompatible - chemistry
Coating
Compartments
Complexity
Cooperativity
Deoxyribonucleic acid
DNA
Environmental changes
Handedness
HeLa Cells
Helicity
Humans
Hydrogen-Ion Concentration
letter
Materials Science
Microscopy, Electron, Transmission
Nanotechnology
Nanotechnology and Microengineering
Nucleic Acid Conformation
Proteins
Pyridinium Compounds - blood
Replication
Salmon
Structural hierarchy
Switching
Tobacco
Translocation
Viruses
title Collective helicity switching of a DNA–coat assembly
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A56%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collective%20helicity%20switching%20of%20a%20DNA%E2%80%93coat%20assembly&rft.jtitle=Nature%20nanotechnology&rft.au=Kim,%20Yongju&rft.date=2017-07&rft.volume=12&rft.issue=6&rft.spage=551&rft.epage=556&rft.pages=551-556&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/nnano.2017.42&rft_dat=%3Cproquest_cross%3E1917965455%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1917965455&rft_id=info:pmid/28346455&rfr_iscdi=true