Temperature Control by Its Forecasting Applying Score Fusion for Sustainable Development
Temperature control and its prediction has turned into a research challenge for the knowledge of the planet and its effects on different human activities and this will assure, in conjunction with energy efficiency, a sustainable development reducing CO2 emissions and fuel consumption. This work trie...
Gespeichert in:
Veröffentlicht in: | Sustainability 2017, Vol.9 (2), p.193-193 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 193 |
---|---|
container_issue | 2 |
container_start_page | 193 |
container_title | Sustainability |
container_volume | 9 |
creator | Hernández-Travieso, José Herrera-Jiménez, Antonio Travieso-González, Carlos Morgado-Dias, Fernando Alonso-Hernández, Jesús Ravelo-García, Antonio |
description | Temperature control and its prediction has turned into a research challenge for the knowledge of the planet and its effects on different human activities and this will assure, in conjunction with energy efficiency, a sustainable development reducing CO2 emissions and fuel consumption. This work tries to offer a practical solution to temperature forecast and control, which has been traditionally carried out by specialized institutes. For the accomplishment of temperature estimation, a score fusion block based on Artificial Neural Networks was used. The dataset is composed by data from a meteorological station, using 20,000 temperature values and 10,000 samples of several meteorological parameters. Thus, the complexity of the traditional forecasting models is resolved. As a result, a practical system has been obtained, reaching a mean squared error of 0.136 °C for short period of time prediction and 5 °C for large period of time prediction. |
doi_str_mv | 10.3390/su9020193 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1881765112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1881765112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-30aacf744acb402b66e0f43d867cfa6ba06c66f936d4928757891069661ad7073</originalsourceid><addsrcrecordid>eNpdkFFLwzAUhYMoOOYe_AcBX_Shem_TJs3jmE4HAx82wbeSZol0tE1NUmH_3o6JiOflHg4fl8Mh5BrhnjEJD2GQkAJKdkYmKQhMEHI4_-MvySyEPYxiDCXyCXnfmrY3XsXBG7pwXfSuodWBrmKgS-eNViHW3Qed931zOJqNHlO6HELtOmqdp5shRFV3qmoMfTRfpnF9a7p4RS6saoKZ_dwpeVs-bRcvyfr1ebWYrxPN0jwmDJTSVmSZ0lUGacW5AZuxXcGFtopXCrjm3ErGd5lMC5GLQiJwyTmqnQDBpuT29Lf37nMwIZZtHbRpGtUZN4QSiwIFzxHTEb35h-7d4Lux3UiJIkNkkI_U3YnS3oXgjS17X7fKH0qE8jhz-Tsz-wZFzm5c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1878411305</pqid></control><display><type>article</type><title>Temperature Control by Its Forecasting Applying Score Fusion for Sustainable Development</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hernández-Travieso, José ; Herrera-Jiménez, Antonio ; Travieso-González, Carlos ; Morgado-Dias, Fernando ; Alonso-Hernández, Jesús ; Ravelo-García, Antonio</creator><creatorcontrib>Hernández-Travieso, José ; Herrera-Jiménez, Antonio ; Travieso-González, Carlos ; Morgado-Dias, Fernando ; Alonso-Hernández, Jesús ; Ravelo-García, Antonio</creatorcontrib><description>Temperature control and its prediction has turned into a research challenge for the knowledge of the planet and its effects on different human activities and this will assure, in conjunction with energy efficiency, a sustainable development reducing CO2 emissions and fuel consumption. This work tries to offer a practical solution to temperature forecast and control, which has been traditionally carried out by specialized institutes. For the accomplishment of temperature estimation, a score fusion block based on Artificial Neural Networks was used. The dataset is composed by data from a meteorological station, using 20,000 temperature values and 10,000 samples of several meteorological parameters. Thus, the complexity of the traditional forecasting models is resolved. As a result, a practical system has been obtained, reaching a mean squared error of 0.136 °C for short period of time prediction and 5 °C for large period of time prediction.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su9020193</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Agricultural production ; Climate ; Crude oil prices ; Energy efficiency ; Mathematical models ; Meteorological parameters ; Neural networks ; Power ; Sea level ; Sustainability ; Sustainable development ; Temperature control ; Time series ; Traditions ; Weather ; Weather forecasting</subject><ispartof>Sustainability, 2017, Vol.9 (2), p.193-193</ispartof><rights>Copyright MDPI AG 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-30aacf744acb402b66e0f43d867cfa6ba06c66f936d4928757891069661ad7073</citedby><cites>FETCH-LOGICAL-c325t-30aacf744acb402b66e0f43d867cfa6ba06c66f936d4928757891069661ad7073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Hernández-Travieso, José</creatorcontrib><creatorcontrib>Herrera-Jiménez, Antonio</creatorcontrib><creatorcontrib>Travieso-González, Carlos</creatorcontrib><creatorcontrib>Morgado-Dias, Fernando</creatorcontrib><creatorcontrib>Alonso-Hernández, Jesús</creatorcontrib><creatorcontrib>Ravelo-García, Antonio</creatorcontrib><title>Temperature Control by Its Forecasting Applying Score Fusion for Sustainable Development</title><title>Sustainability</title><description>Temperature control and its prediction has turned into a research challenge for the knowledge of the planet and its effects on different human activities and this will assure, in conjunction with energy efficiency, a sustainable development reducing CO2 emissions and fuel consumption. This work tries to offer a practical solution to temperature forecast and control, which has been traditionally carried out by specialized institutes. For the accomplishment of temperature estimation, a score fusion block based on Artificial Neural Networks was used. The dataset is composed by data from a meteorological station, using 20,000 temperature values and 10,000 samples of several meteorological parameters. Thus, the complexity of the traditional forecasting models is resolved. As a result, a practical system has been obtained, reaching a mean squared error of 0.136 °C for short period of time prediction and 5 °C for large period of time prediction.</description><subject>Agricultural production</subject><subject>Climate</subject><subject>Crude oil prices</subject><subject>Energy efficiency</subject><subject>Mathematical models</subject><subject>Meteorological parameters</subject><subject>Neural networks</subject><subject>Power</subject><subject>Sea level</subject><subject>Sustainability</subject><subject>Sustainable development</subject><subject>Temperature control</subject><subject>Time series</subject><subject>Traditions</subject><subject>Weather</subject><subject>Weather forecasting</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkFFLwzAUhYMoOOYe_AcBX_Shem_TJs3jmE4HAx82wbeSZol0tE1NUmH_3o6JiOflHg4fl8Mh5BrhnjEJD2GQkAJKdkYmKQhMEHI4_-MvySyEPYxiDCXyCXnfmrY3XsXBG7pwXfSuodWBrmKgS-eNViHW3Qed931zOJqNHlO6HELtOmqdp5shRFV3qmoMfTRfpnF9a7p4RS6saoKZ_dwpeVs-bRcvyfr1ebWYrxPN0jwmDJTSVmSZ0lUGacW5AZuxXcGFtopXCrjm3ErGd5lMC5GLQiJwyTmqnQDBpuT29Lf37nMwIZZtHbRpGtUZN4QSiwIFzxHTEb35h-7d4Lux3UiJIkNkkI_U3YnS3oXgjS17X7fKH0qE8jhz-Tsz-wZFzm5c</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Hernández-Travieso, José</creator><creator>Herrera-Jiménez, Antonio</creator><creator>Travieso-González, Carlos</creator><creator>Morgado-Dias, Fernando</creator><creator>Alonso-Hernández, Jesús</creator><creator>Ravelo-García, Antonio</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope></search><sort><creationdate>2017</creationdate><title>Temperature Control by Its Forecasting Applying Score Fusion for Sustainable Development</title><author>Hernández-Travieso, José ; Herrera-Jiménez, Antonio ; Travieso-González, Carlos ; Morgado-Dias, Fernando ; Alonso-Hernández, Jesús ; Ravelo-García, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-30aacf744acb402b66e0f43d867cfa6ba06c66f936d4928757891069661ad7073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agricultural production</topic><topic>Climate</topic><topic>Crude oil prices</topic><topic>Energy efficiency</topic><topic>Mathematical models</topic><topic>Meteorological parameters</topic><topic>Neural networks</topic><topic>Power</topic><topic>Sea level</topic><topic>Sustainability</topic><topic>Sustainable development</topic><topic>Temperature control</topic><topic>Time series</topic><topic>Traditions</topic><topic>Weather</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hernández-Travieso, José</creatorcontrib><creatorcontrib>Herrera-Jiménez, Antonio</creatorcontrib><creatorcontrib>Travieso-González, Carlos</creatorcontrib><creatorcontrib>Morgado-Dias, Fernando</creatorcontrib><creatorcontrib>Alonso-Hernández, Jesús</creatorcontrib><creatorcontrib>Ravelo-García, Antonio</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernández-Travieso, José</au><au>Herrera-Jiménez, Antonio</au><au>Travieso-González, Carlos</au><au>Morgado-Dias, Fernando</au><au>Alonso-Hernández, Jesús</au><au>Ravelo-García, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature Control by Its Forecasting Applying Score Fusion for Sustainable Development</atitle><jtitle>Sustainability</jtitle><date>2017</date><risdate>2017</risdate><volume>9</volume><issue>2</issue><spage>193</spage><epage>193</epage><pages>193-193</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Temperature control and its prediction has turned into a research challenge for the knowledge of the planet and its effects on different human activities and this will assure, in conjunction with energy efficiency, a sustainable development reducing CO2 emissions and fuel consumption. This work tries to offer a practical solution to temperature forecast and control, which has been traditionally carried out by specialized institutes. For the accomplishment of temperature estimation, a score fusion block based on Artificial Neural Networks was used. The dataset is composed by data from a meteorological station, using 20,000 temperature values and 10,000 samples of several meteorological parameters. Thus, the complexity of the traditional forecasting models is resolved. As a result, a practical system has been obtained, reaching a mean squared error of 0.136 °C for short period of time prediction and 5 °C for large period of time prediction.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su9020193</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2017, Vol.9 (2), p.193-193 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_miscellaneous_1881765112 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Agricultural production Climate Crude oil prices Energy efficiency Mathematical models Meteorological parameters Neural networks Power Sea level Sustainability Sustainable development Temperature control Time series Traditions Weather Weather forecasting |
title | Temperature Control by Its Forecasting Applying Score Fusion for Sustainable Development |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A27%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20Control%20by%20Its%20Forecasting%20Applying%20Score%20Fusion%20for%20Sustainable%20Development&rft.jtitle=Sustainability&rft.au=Hern%C3%A1ndez-Travieso,%20Jos%C3%A9&rft.date=2017&rft.volume=9&rft.issue=2&rft.spage=193&rft.epage=193&rft.pages=193-193&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su9020193&rft_dat=%3Cproquest_cross%3E1881765112%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1878411305&rft_id=info:pmid/&rfr_iscdi=true |