Temperature Control by Its Forecasting Applying Score Fusion for Sustainable Development

Temperature control and its prediction has turned into a research challenge for the knowledge of the planet and its effects on different human activities and this will assure, in conjunction with energy efficiency, a sustainable development reducing CO2 emissions and fuel consumption. This work trie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2017, Vol.9 (2), p.193-193
Hauptverfasser: Hernández-Travieso, José, Herrera-Jiménez, Antonio, Travieso-González, Carlos, Morgado-Dias, Fernando, Alonso-Hernández, Jesús, Ravelo-García, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 193
container_issue 2
container_start_page 193
container_title Sustainability
container_volume 9
creator Hernández-Travieso, José
Herrera-Jiménez, Antonio
Travieso-González, Carlos
Morgado-Dias, Fernando
Alonso-Hernández, Jesús
Ravelo-García, Antonio
description Temperature control and its prediction has turned into a research challenge for the knowledge of the planet and its effects on different human activities and this will assure, in conjunction with energy efficiency, a sustainable development reducing CO2 emissions and fuel consumption. This work tries to offer a practical solution to temperature forecast and control, which has been traditionally carried out by specialized institutes. For the accomplishment of temperature estimation, a score fusion block based on Artificial Neural Networks was used. The dataset is composed by data from a meteorological station, using 20,000 temperature values and 10,000 samples of several meteorological parameters. Thus, the complexity of the traditional forecasting models is resolved. As a result, a practical system has been obtained, reaching a mean squared error of 0.136 °C for short period of time prediction and 5 °C for large period of time prediction.
doi_str_mv 10.3390/su9020193
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1881765112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1881765112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-30aacf744acb402b66e0f43d867cfa6ba06c66f936d4928757891069661ad7073</originalsourceid><addsrcrecordid>eNpdkFFLwzAUhYMoOOYe_AcBX_Shem_TJs3jmE4HAx82wbeSZol0tE1NUmH_3o6JiOflHg4fl8Mh5BrhnjEJD2GQkAJKdkYmKQhMEHI4_-MvySyEPYxiDCXyCXnfmrY3XsXBG7pwXfSuodWBrmKgS-eNViHW3Qed931zOJqNHlO6HELtOmqdp5shRFV3qmoMfTRfpnF9a7p4RS6saoKZ_dwpeVs-bRcvyfr1ebWYrxPN0jwmDJTSVmSZ0lUGacW5AZuxXcGFtopXCrjm3ErGd5lMC5GLQiJwyTmqnQDBpuT29Lf37nMwIZZtHbRpGtUZN4QSiwIFzxHTEb35h-7d4Lux3UiJIkNkkI_U3YnS3oXgjS17X7fKH0qE8jhz-Tsz-wZFzm5c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1878411305</pqid></control><display><type>article</type><title>Temperature Control by Its Forecasting Applying Score Fusion for Sustainable Development</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hernández-Travieso, José ; Herrera-Jiménez, Antonio ; Travieso-González, Carlos ; Morgado-Dias, Fernando ; Alonso-Hernández, Jesús ; Ravelo-García, Antonio</creator><creatorcontrib>Hernández-Travieso, José ; Herrera-Jiménez, Antonio ; Travieso-González, Carlos ; Morgado-Dias, Fernando ; Alonso-Hernández, Jesús ; Ravelo-García, Antonio</creatorcontrib><description>Temperature control and its prediction has turned into a research challenge for the knowledge of the planet and its effects on different human activities and this will assure, in conjunction with energy efficiency, a sustainable development reducing CO2 emissions and fuel consumption. This work tries to offer a practical solution to temperature forecast and control, which has been traditionally carried out by specialized institutes. For the accomplishment of temperature estimation, a score fusion block based on Artificial Neural Networks was used. The dataset is composed by data from a meteorological station, using 20,000 temperature values and 10,000 samples of several meteorological parameters. Thus, the complexity of the traditional forecasting models is resolved. As a result, a practical system has been obtained, reaching a mean squared error of 0.136 °C for short period of time prediction and 5 °C for large period of time prediction.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su9020193</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Agricultural production ; Climate ; Crude oil prices ; Energy efficiency ; Mathematical models ; Meteorological parameters ; Neural networks ; Power ; Sea level ; Sustainability ; Sustainable development ; Temperature control ; Time series ; Traditions ; Weather ; Weather forecasting</subject><ispartof>Sustainability, 2017, Vol.9 (2), p.193-193</ispartof><rights>Copyright MDPI AG 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-30aacf744acb402b66e0f43d867cfa6ba06c66f936d4928757891069661ad7073</citedby><cites>FETCH-LOGICAL-c325t-30aacf744acb402b66e0f43d867cfa6ba06c66f936d4928757891069661ad7073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Hernández-Travieso, José</creatorcontrib><creatorcontrib>Herrera-Jiménez, Antonio</creatorcontrib><creatorcontrib>Travieso-González, Carlos</creatorcontrib><creatorcontrib>Morgado-Dias, Fernando</creatorcontrib><creatorcontrib>Alonso-Hernández, Jesús</creatorcontrib><creatorcontrib>Ravelo-García, Antonio</creatorcontrib><title>Temperature Control by Its Forecasting Applying Score Fusion for Sustainable Development</title><title>Sustainability</title><description>Temperature control and its prediction has turned into a research challenge for the knowledge of the planet and its effects on different human activities and this will assure, in conjunction with energy efficiency, a sustainable development reducing CO2 emissions and fuel consumption. This work tries to offer a practical solution to temperature forecast and control, which has been traditionally carried out by specialized institutes. For the accomplishment of temperature estimation, a score fusion block based on Artificial Neural Networks was used. The dataset is composed by data from a meteorological station, using 20,000 temperature values and 10,000 samples of several meteorological parameters. Thus, the complexity of the traditional forecasting models is resolved. As a result, a practical system has been obtained, reaching a mean squared error of 0.136 °C for short period of time prediction and 5 °C for large period of time prediction.</description><subject>Agricultural production</subject><subject>Climate</subject><subject>Crude oil prices</subject><subject>Energy efficiency</subject><subject>Mathematical models</subject><subject>Meteorological parameters</subject><subject>Neural networks</subject><subject>Power</subject><subject>Sea level</subject><subject>Sustainability</subject><subject>Sustainable development</subject><subject>Temperature control</subject><subject>Time series</subject><subject>Traditions</subject><subject>Weather</subject><subject>Weather forecasting</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkFFLwzAUhYMoOOYe_AcBX_Shem_TJs3jmE4HAx82wbeSZol0tE1NUmH_3o6JiOflHg4fl8Mh5BrhnjEJD2GQkAJKdkYmKQhMEHI4_-MvySyEPYxiDCXyCXnfmrY3XsXBG7pwXfSuodWBrmKgS-eNViHW3Qed931zOJqNHlO6HELtOmqdp5shRFV3qmoMfTRfpnF9a7p4RS6saoKZ_dwpeVs-bRcvyfr1ebWYrxPN0jwmDJTSVmSZ0lUGacW5AZuxXcGFtopXCrjm3ErGd5lMC5GLQiJwyTmqnQDBpuT29Lf37nMwIZZtHbRpGtUZN4QSiwIFzxHTEb35h-7d4Lux3UiJIkNkkI_U3YnS3oXgjS17X7fKH0qE8jhz-Tsz-wZFzm5c</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Hernández-Travieso, José</creator><creator>Herrera-Jiménez, Antonio</creator><creator>Travieso-González, Carlos</creator><creator>Morgado-Dias, Fernando</creator><creator>Alonso-Hernández, Jesús</creator><creator>Ravelo-García, Antonio</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope></search><sort><creationdate>2017</creationdate><title>Temperature Control by Its Forecasting Applying Score Fusion for Sustainable Development</title><author>Hernández-Travieso, José ; Herrera-Jiménez, Antonio ; Travieso-González, Carlos ; Morgado-Dias, Fernando ; Alonso-Hernández, Jesús ; Ravelo-García, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-30aacf744acb402b66e0f43d867cfa6ba06c66f936d4928757891069661ad7073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agricultural production</topic><topic>Climate</topic><topic>Crude oil prices</topic><topic>Energy efficiency</topic><topic>Mathematical models</topic><topic>Meteorological parameters</topic><topic>Neural networks</topic><topic>Power</topic><topic>Sea level</topic><topic>Sustainability</topic><topic>Sustainable development</topic><topic>Temperature control</topic><topic>Time series</topic><topic>Traditions</topic><topic>Weather</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hernández-Travieso, José</creatorcontrib><creatorcontrib>Herrera-Jiménez, Antonio</creatorcontrib><creatorcontrib>Travieso-González, Carlos</creatorcontrib><creatorcontrib>Morgado-Dias, Fernando</creatorcontrib><creatorcontrib>Alonso-Hernández, Jesús</creatorcontrib><creatorcontrib>Ravelo-García, Antonio</creatorcontrib><collection>CrossRef</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernández-Travieso, José</au><au>Herrera-Jiménez, Antonio</au><au>Travieso-González, Carlos</au><au>Morgado-Dias, Fernando</au><au>Alonso-Hernández, Jesús</au><au>Ravelo-García, Antonio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature Control by Its Forecasting Applying Score Fusion for Sustainable Development</atitle><jtitle>Sustainability</jtitle><date>2017</date><risdate>2017</risdate><volume>9</volume><issue>2</issue><spage>193</spage><epage>193</epage><pages>193-193</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Temperature control and its prediction has turned into a research challenge for the knowledge of the planet and its effects on different human activities and this will assure, in conjunction with energy efficiency, a sustainable development reducing CO2 emissions and fuel consumption. This work tries to offer a practical solution to temperature forecast and control, which has been traditionally carried out by specialized institutes. For the accomplishment of temperature estimation, a score fusion block based on Artificial Neural Networks was used. The dataset is composed by data from a meteorological station, using 20,000 temperature values and 10,000 samples of several meteorological parameters. Thus, the complexity of the traditional forecasting models is resolved. As a result, a practical system has been obtained, reaching a mean squared error of 0.136 °C for short period of time prediction and 5 °C for large period of time prediction.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su9020193</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2017, Vol.9 (2), p.193-193
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_miscellaneous_1881765112
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Agricultural production
Climate
Crude oil prices
Energy efficiency
Mathematical models
Meteorological parameters
Neural networks
Power
Sea level
Sustainability
Sustainable development
Temperature control
Time series
Traditions
Weather
Weather forecasting
title Temperature Control by Its Forecasting Applying Score Fusion for Sustainable Development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A27%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20Control%20by%20Its%20Forecasting%20Applying%20Score%20Fusion%20for%20Sustainable%20Development&rft.jtitle=Sustainability&rft.au=Hern%C3%A1ndez-Travieso,%20Jos%C3%A9&rft.date=2017&rft.volume=9&rft.issue=2&rft.spage=193&rft.epage=193&rft.pages=193-193&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su9020193&rft_dat=%3Cproquest_cross%3E1881765112%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1878411305&rft_id=info:pmid/&rfr_iscdi=true