The Andes Cordillera. Part II: Rio Olivares Basin snow conditions (1979–2014), central Chile

ABSTRACT Snow cover extent, duration, and properties were simulated (1979/1980–2013/2014) for the Rio Olivares Basin (548 km2) in central Chilean Andes, in an effort to understand conditions and trends (linear) at a basin scale. The National Aeronautics and Space Administration Modern‐Era Retrospect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of climatology 2017-03, Vol.37 (4), p.1699-1715
Hauptverfasser: Mernild, Sebastian H., Liston, Glen E., Hiemstra, Christopher A., Yde, Jacob C., McPhee, James, Malmros, Jeppe K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1715
container_issue 4
container_start_page 1699
container_title International journal of climatology
container_volume 37
creator Mernild, Sebastian H.
Liston, Glen E.
Hiemstra, Christopher A.
Yde, Jacob C.
McPhee, James
Malmros, Jeppe K.
description ABSTRACT Snow cover extent, duration, and properties were simulated (1979/1980–2013/2014) for the Rio Olivares Basin (548 km2) in central Chilean Andes, in an effort to understand conditions and trends (linear) at a basin scale. The National Aeronautics and Space Administration Modern‐Era Retrospective Analysis for Research and Applications products, together with the snow modelling software package SnowModel allowed simulations of first‐order atmospheric forcings (mean annual air temperature (MAAT) and water‐equivalent precipitation) and terrestrial snow features (snow cover extent, duration, snow water‐equivalent depth, snow density, and runoff generated from snow melt). Simulated snow cover extent and depletion curves were verified against Moderate Resolution Imaging Spectroradiometer‐derived snow cover data. For the Rio Olivares Basin, MAAT was −2.9 ± 0.6 °C with a mean 0° isotherm at 3325 m a.s.l. The greatest temporal and spatial changes in temperature over the 35‐year period occurred in January and at the highest elevations, respectively. Mean annual precipitation was 1.86 ± 0.60 m w.e., indicating an increase in precipitation of ∼0.1 m w.e. 100 m−1 increase in elevation. On average, ∼90% of the basin precipitation fell as snow, varying from 70% at ∼2600 m a.s.l., to 95% at ∼4200 m a.s.l. In 20 out of 35 years the snow cover extent went to 0% (no basin snow cover) by end‐of‐summer (during March), and the snow duration increased on average by ∼10 days 100 m−1 increase in elevation. Approximately 85% of the basin outlet freshwater runoff originated from snowmelt, making snowmelt a dominant contributor to water resources. Snowmelt‐derived basin runoff was dominated by variability in snow precipitation rather than by variability in MAAT.
doi_str_mv 10.1002/joc.4828
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1881758999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1881758999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3548-eab69fa52a88e860f7a7f3d3f7ab66c8903bf032ef71815b7d085ad7114a7c8f3</originalsourceid><addsrcrecordid>eNp90ctKAzEUBuAgCtYq-AgBNwpOPZlbTtzVwUtFqEjdOqSZDE0ZJzVpLd35Dr6hT2JqBUHQ1dl858L5CTlk0GMA8dnUql6KMW6RDgPBIwDEbdIBFCLClOEu2fN-CgBCsLxDnkYTTfttpT0trKtM02gne_ReujkdDM7pg7F02JhX6YK4kN601Ld2SZVtKzM3tvX0mAkuPt7eY2DpySlVup072dBiYhq9T3Zq2Xh98F275PHqclTcRHfD60HRv4tUkqUYaTnORS2zWCJqzKHmktdJlYQ6znOFApJxDUmsa86QZWNeAWay4oylkiusky453sydOfuy0H5ePhuvdNPIVtuFLxki41n4gQj06Bed2oVrw3UlC3vymCd5-q9CnosU4iz5Wauc9d7pupw58yzdqmRQruMIXapcxxFotKHL8JbVn668HRZf_hO_7YgH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1876940253</pqid></control><display><type>article</type><title>The Andes Cordillera. Part II: Rio Olivares Basin snow conditions (1979–2014), central Chile</title><source>Access via Wiley Online Library</source><creator>Mernild, Sebastian H. ; Liston, Glen E. ; Hiemstra, Christopher A. ; Yde, Jacob C. ; McPhee, James ; Malmros, Jeppe K.</creator><creatorcontrib>Mernild, Sebastian H. ; Liston, Glen E. ; Hiemstra, Christopher A. ; Yde, Jacob C. ; McPhee, James ; Malmros, Jeppe K.</creatorcontrib><description>ABSTRACT Snow cover extent, duration, and properties were simulated (1979/1980–2013/2014) for the Rio Olivares Basin (548 km2) in central Chilean Andes, in an effort to understand conditions and trends (linear) at a basin scale. The National Aeronautics and Space Administration Modern‐Era Retrospective Analysis for Research and Applications products, together with the snow modelling software package SnowModel allowed simulations of first‐order atmospheric forcings (mean annual air temperature (MAAT) and water‐equivalent precipitation) and terrestrial snow features (snow cover extent, duration, snow water‐equivalent depth, snow density, and runoff generated from snow melt). Simulated snow cover extent and depletion curves were verified against Moderate Resolution Imaging Spectroradiometer‐derived snow cover data. For the Rio Olivares Basin, MAAT was −2.9 ± 0.6 °C with a mean 0° isotherm at 3325 m a.s.l. The greatest temporal and spatial changes in temperature over the 35‐year period occurred in January and at the highest elevations, respectively. Mean annual precipitation was 1.86 ± 0.60 m w.e., indicating an increase in precipitation of ∼0.1 m w.e. 100 m−1 increase in elevation. On average, ∼90% of the basin precipitation fell as snow, varying from 70% at ∼2600 m a.s.l., to 95% at ∼4200 m a.s.l. In 20 out of 35 years the snow cover extent went to 0% (no basin snow cover) by end‐of‐summer (during March), and the snow duration increased on average by ∼10 days 100 m−1 increase in elevation. Approximately 85% of the basin outlet freshwater runoff originated from snowmelt, making snowmelt a dominant contributor to water resources. Snowmelt‐derived basin runoff was dominated by variability in snow precipitation rather than by variability in MAAT.</description><identifier>ISSN: 0899-8418</identifier><identifier>EISSN: 1097-0088</identifier><identifier>DOI: 10.1002/joc.4828</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Aeronautics ; Air temperature ; Andes Cordillera ; Annual precipitation ; Atmospheric models ; Computer simulation ; Computer software ; Duration ; Elevation ; Equivalence ; Freshwater ; Imaging techniques ; Inland water environment ; Mean annual precipitation ; Modelling ; NASA MERRA ; Precipitation ; Rainfall ; Rio Olivares Basin ; Runoff ; Snow ; Snow cover ; Snow cover data ; Snow density ; Snowmelt ; SnowModel ; Spectroradiometers ; Terrestrial environments ; Variability ; Water depth ; Water resources</subject><ispartof>International journal of climatology, 2017-03, Vol.37 (4), p.1699-1715</ispartof><rights>2016 Royal Meteorological Society</rights><rights>2017 Royal Meteorological Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3548-eab69fa52a88e860f7a7f3d3f7ab66c8903bf032ef71815b7d085ad7114a7c8f3</citedby><cites>FETCH-LOGICAL-c3548-eab69fa52a88e860f7a7f3d3f7ab66c8903bf032ef71815b7d085ad7114a7c8f3</cites><orcidid>0000-0003-0797-3975</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjoc.4828$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjoc.4828$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Mernild, Sebastian H.</creatorcontrib><creatorcontrib>Liston, Glen E.</creatorcontrib><creatorcontrib>Hiemstra, Christopher A.</creatorcontrib><creatorcontrib>Yde, Jacob C.</creatorcontrib><creatorcontrib>McPhee, James</creatorcontrib><creatorcontrib>Malmros, Jeppe K.</creatorcontrib><title>The Andes Cordillera. Part II: Rio Olivares Basin snow conditions (1979–2014), central Chile</title><title>International journal of climatology</title><description>ABSTRACT Snow cover extent, duration, and properties were simulated (1979/1980–2013/2014) for the Rio Olivares Basin (548 km2) in central Chilean Andes, in an effort to understand conditions and trends (linear) at a basin scale. The National Aeronautics and Space Administration Modern‐Era Retrospective Analysis for Research and Applications products, together with the snow modelling software package SnowModel allowed simulations of first‐order atmospheric forcings (mean annual air temperature (MAAT) and water‐equivalent precipitation) and terrestrial snow features (snow cover extent, duration, snow water‐equivalent depth, snow density, and runoff generated from snow melt). Simulated snow cover extent and depletion curves were verified against Moderate Resolution Imaging Spectroradiometer‐derived snow cover data. For the Rio Olivares Basin, MAAT was −2.9 ± 0.6 °C with a mean 0° isotherm at 3325 m a.s.l. The greatest temporal and spatial changes in temperature over the 35‐year period occurred in January and at the highest elevations, respectively. Mean annual precipitation was 1.86 ± 0.60 m w.e., indicating an increase in precipitation of ∼0.1 m w.e. 100 m−1 increase in elevation. On average, ∼90% of the basin precipitation fell as snow, varying from 70% at ∼2600 m a.s.l., to 95% at ∼4200 m a.s.l. In 20 out of 35 years the snow cover extent went to 0% (no basin snow cover) by end‐of‐summer (during March), and the snow duration increased on average by ∼10 days 100 m−1 increase in elevation. Approximately 85% of the basin outlet freshwater runoff originated from snowmelt, making snowmelt a dominant contributor to water resources. Snowmelt‐derived basin runoff was dominated by variability in snow precipitation rather than by variability in MAAT.</description><subject>Aeronautics</subject><subject>Air temperature</subject><subject>Andes Cordillera</subject><subject>Annual precipitation</subject><subject>Atmospheric models</subject><subject>Computer simulation</subject><subject>Computer software</subject><subject>Duration</subject><subject>Elevation</subject><subject>Equivalence</subject><subject>Freshwater</subject><subject>Imaging techniques</subject><subject>Inland water environment</subject><subject>Mean annual precipitation</subject><subject>Modelling</subject><subject>NASA MERRA</subject><subject>Precipitation</subject><subject>Rainfall</subject><subject>Rio Olivares Basin</subject><subject>Runoff</subject><subject>Snow</subject><subject>Snow cover</subject><subject>Snow cover data</subject><subject>Snow density</subject><subject>Snowmelt</subject><subject>SnowModel</subject><subject>Spectroradiometers</subject><subject>Terrestrial environments</subject><subject>Variability</subject><subject>Water depth</subject><subject>Water resources</subject><issn>0899-8418</issn><issn>1097-0088</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp90ctKAzEUBuAgCtYq-AgBNwpOPZlbTtzVwUtFqEjdOqSZDE0ZJzVpLd35Dr6hT2JqBUHQ1dl858L5CTlk0GMA8dnUql6KMW6RDgPBIwDEbdIBFCLClOEu2fN-CgBCsLxDnkYTTfttpT0trKtM02gne_ReujkdDM7pg7F02JhX6YK4kN601Ld2SZVtKzM3tvX0mAkuPt7eY2DpySlVup072dBiYhq9T3Zq2Xh98F275PHqclTcRHfD60HRv4tUkqUYaTnORS2zWCJqzKHmktdJlYQ6znOFApJxDUmsa86QZWNeAWay4oylkiusky453sydOfuy0H5ePhuvdNPIVtuFLxki41n4gQj06Bed2oVrw3UlC3vymCd5-q9CnosU4iz5Wauc9d7pupw58yzdqmRQruMIXapcxxFotKHL8JbVn668HRZf_hO_7YgH</recordid><startdate>20170330</startdate><enddate>20170330</enddate><creator>Mernild, Sebastian H.</creator><creator>Liston, Glen E.</creator><creator>Hiemstra, Christopher A.</creator><creator>Yde, Jacob C.</creator><creator>McPhee, James</creator><creator>Malmros, Jeppe K.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0003-0797-3975</orcidid></search><sort><creationdate>20170330</creationdate><title>The Andes Cordillera. Part II: Rio Olivares Basin snow conditions (1979–2014), central Chile</title><author>Mernild, Sebastian H. ; Liston, Glen E. ; Hiemstra, Christopher A. ; Yde, Jacob C. ; McPhee, James ; Malmros, Jeppe K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3548-eab69fa52a88e860f7a7f3d3f7ab66c8903bf032ef71815b7d085ad7114a7c8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aeronautics</topic><topic>Air temperature</topic><topic>Andes Cordillera</topic><topic>Annual precipitation</topic><topic>Atmospheric models</topic><topic>Computer simulation</topic><topic>Computer software</topic><topic>Duration</topic><topic>Elevation</topic><topic>Equivalence</topic><topic>Freshwater</topic><topic>Imaging techniques</topic><topic>Inland water environment</topic><topic>Mean annual precipitation</topic><topic>Modelling</topic><topic>NASA MERRA</topic><topic>Precipitation</topic><topic>Rainfall</topic><topic>Rio Olivares Basin</topic><topic>Runoff</topic><topic>Snow</topic><topic>Snow cover</topic><topic>Snow cover data</topic><topic>Snow density</topic><topic>Snowmelt</topic><topic>SnowModel</topic><topic>Spectroradiometers</topic><topic>Terrestrial environments</topic><topic>Variability</topic><topic>Water depth</topic><topic>Water resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mernild, Sebastian H.</creatorcontrib><creatorcontrib>Liston, Glen E.</creatorcontrib><creatorcontrib>Hiemstra, Christopher A.</creatorcontrib><creatorcontrib>Yde, Jacob C.</creatorcontrib><creatorcontrib>McPhee, James</creatorcontrib><creatorcontrib>Malmros, Jeppe K.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>International journal of climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mernild, Sebastian H.</au><au>Liston, Glen E.</au><au>Hiemstra, Christopher A.</au><au>Yde, Jacob C.</au><au>McPhee, James</au><au>Malmros, Jeppe K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Andes Cordillera. Part II: Rio Olivares Basin snow conditions (1979–2014), central Chile</atitle><jtitle>International journal of climatology</jtitle><date>2017-03-30</date><risdate>2017</risdate><volume>37</volume><issue>4</issue><spage>1699</spage><epage>1715</epage><pages>1699-1715</pages><issn>0899-8418</issn><eissn>1097-0088</eissn><abstract>ABSTRACT Snow cover extent, duration, and properties were simulated (1979/1980–2013/2014) for the Rio Olivares Basin (548 km2) in central Chilean Andes, in an effort to understand conditions and trends (linear) at a basin scale. The National Aeronautics and Space Administration Modern‐Era Retrospective Analysis for Research and Applications products, together with the snow modelling software package SnowModel allowed simulations of first‐order atmospheric forcings (mean annual air temperature (MAAT) and water‐equivalent precipitation) and terrestrial snow features (snow cover extent, duration, snow water‐equivalent depth, snow density, and runoff generated from snow melt). Simulated snow cover extent and depletion curves were verified against Moderate Resolution Imaging Spectroradiometer‐derived snow cover data. For the Rio Olivares Basin, MAAT was −2.9 ± 0.6 °C with a mean 0° isotherm at 3325 m a.s.l. The greatest temporal and spatial changes in temperature over the 35‐year period occurred in January and at the highest elevations, respectively. Mean annual precipitation was 1.86 ± 0.60 m w.e., indicating an increase in precipitation of ∼0.1 m w.e. 100 m−1 increase in elevation. On average, ∼90% of the basin precipitation fell as snow, varying from 70% at ∼2600 m a.s.l., to 95% at ∼4200 m a.s.l. In 20 out of 35 years the snow cover extent went to 0% (no basin snow cover) by end‐of‐summer (during March), and the snow duration increased on average by ∼10 days 100 m−1 increase in elevation. Approximately 85% of the basin outlet freshwater runoff originated from snowmelt, making snowmelt a dominant contributor to water resources. Snowmelt‐derived basin runoff was dominated by variability in snow precipitation rather than by variability in MAAT.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/joc.4828</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0797-3975</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0899-8418
ispartof International journal of climatology, 2017-03, Vol.37 (4), p.1699-1715
issn 0899-8418
1097-0088
language eng
recordid cdi_proquest_miscellaneous_1881758999
source Access via Wiley Online Library
subjects Aeronautics
Air temperature
Andes Cordillera
Annual precipitation
Atmospheric models
Computer simulation
Computer software
Duration
Elevation
Equivalence
Freshwater
Imaging techniques
Inland water environment
Mean annual precipitation
Modelling
NASA MERRA
Precipitation
Rainfall
Rio Olivares Basin
Runoff
Snow
Snow cover
Snow cover data
Snow density
Snowmelt
SnowModel
Spectroradiometers
Terrestrial environments
Variability
Water depth
Water resources
title The Andes Cordillera. Part II: Rio Olivares Basin snow conditions (1979–2014), central Chile
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T17%3A15%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Andes%20Cordillera.%20Part%20II:%20Rio%20Olivares%20Basin%20snow%20conditions%20(1979%E2%80%932014),%20central%20Chile&rft.jtitle=International%20journal%20of%20climatology&rft.au=Mernild,%20Sebastian%20H.&rft.date=2017-03-30&rft.volume=37&rft.issue=4&rft.spage=1699&rft.epage=1715&rft.pages=1699-1715&rft.issn=0899-8418&rft.eissn=1097-0088&rft_id=info:doi/10.1002/joc.4828&rft_dat=%3Cproquest_cross%3E1881758999%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1876940253&rft_id=info:pmid/&rfr_iscdi=true