Cow bones char as a green sorbent for fluorides removal from aqueous solutions: batch and fixed-bed studies
Cow bone char was investigated as sorbent for the defluoridation of aqueous solutions. The cow bone char was characterized in terms of its morphology, chemical composition, and functional groups present on the bone char surface using different analytical techniques: SEM, EDS, N 2 -BET method, and FT...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2017, Vol.24 (3), p.2364-2380 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2380 |
---|---|
container_issue | 3 |
container_start_page | 2364 |
container_title | Environmental science and pollution research international |
container_volume | 24 |
creator | Nigri, Elbert M. Cechinel, Maria Alice. P. Mayer, Diego A. Mazur, Luciana. P. Loureiro, José M. Rocha, Sônia D. F. Vilar, Vítor J. P. |
description | Cow bone char was investigated as sorbent for the defluoridation of aqueous solutions. The cow bone char was characterized in terms of its morphology, chemical composition, and functional groups present on the bone char surface using different analytical techniques: SEM, EDS, N
2
-BET method, and FTIR. Batch equilibrium studies were performed for the bone chars prepared using different procedures. The highest sorption capacities for fluoride were obtained for the acid washed (
q
= 6.2 ± 0.5 mg/g) and Al-doped (
q
= 6.4 ± 0.3 mg/g) bone chars. Langmuir and Freundlich models fitted well the equilibrium sorption data. Fluoride removal rate in batch system is fast in the first 5 h, decreasing after this time until achieving equilibrium due to pore diffusion. The presence of carbonate and bicarbonate ions in the aqueous solution contributes to a decrease of the fluoride sorption capacity of the bone char by 79 and 31 %, respectively. Regeneration of the F-loaded bone char using 0.5 M NaOH solution leads to a sorption capacity for fluoride of 3.1 mg/g in the second loading cycle. Fluoride breakthrough curve obtained in a fixed-bed column presents an asymmetrical
S
-shaped form, with a slow approach of
C
/
C
0
→ 1.0 due to pore diffusion phenomena. Considering the guideline value for drinking water of 1.5 mg F
−
/L, as recommended by World Health Organization, the service cycle for fluoride removal was of 71.0 h ([F
−
]
feed
∼ 9 mg/L; flow rate = 1 mL/min;
m
sorbent
= 12.6 g). A mass transfer model considering the pore diffusion was able to satisfactorily describe the experimental data obtained in batch and continuous systems. |
doi_str_mv | 10.1007/s11356-016-7816-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1881751477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1881751477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-e6aa510be6fc240374eb9de4778ebea4b4377b29fd7c2dd95cfb4565486b4f193</originalsourceid><addsrcrecordid>eNqNkU1rFTEUhoNY7LX6A9xIwI2bsTkzJ8nEnVz8goIbXYdkctJOnZnUZEbtvzeXW0UEoZtkkee8eQ8PY89AvAIh9HkB6KRqBKhG9_WQD9gOFGCj0ZiHbCcMYgMd4il7XMq1EK0wrX7ETtuKy17Cjn3dpx_cp4UKH65c5q5wxy8z0cJLyp6WlceUeZy2lMdQqUxz-u4mHnOaufu2UdpKRadtHdNSXnPv1uGKuyXwOP6k0HgKvKxbGKk8YSfRTYWe3t1n7Mu7t5_3H5qLT-8_7t9cNAMqszaknJMgPKk4tCg6jeRNINS6J08OPXZa-9bEoIc2BCOH6FEqib3yGMF0Z-zlMfcmp1qwrHYey0DT5JZDWwt9D1pCDbwH2ildGyBW9MU_6HXa8lIXsWCkQt0KcaDgSA05lZIp2ps8zi7fWhD2IM0epdkqzR6kWVlnnt8lb36m8Gfit6UKtEeg1KflkvJfX_839ReJ7aHs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956472004</pqid></control><display><type>article</type><title>Cow bones char as a green sorbent for fluorides removal from aqueous solutions: batch and fixed-bed studies</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Nigri, Elbert M. ; Cechinel, Maria Alice. P. ; Mayer, Diego A. ; Mazur, Luciana. P. ; Loureiro, José M. ; Rocha, Sônia D. F. ; Vilar, Vítor J. P.</creator><creatorcontrib>Nigri, Elbert M. ; Cechinel, Maria Alice. P. ; Mayer, Diego A. ; Mazur, Luciana. P. ; Loureiro, José M. ; Rocha, Sônia D. F. ; Vilar, Vítor J. P.</creatorcontrib><description>Cow bone char was investigated as sorbent for the defluoridation of aqueous solutions. The cow bone char was characterized in terms of its morphology, chemical composition, and functional groups present on the bone char surface using different analytical techniques: SEM, EDS, N
2
-BET method, and FTIR. Batch equilibrium studies were performed for the bone chars prepared using different procedures. The highest sorption capacities for fluoride were obtained for the acid washed (
q
= 6.2 ± 0.5 mg/g) and Al-doped (
q
= 6.4 ± 0.3 mg/g) bone chars. Langmuir and Freundlich models fitted well the equilibrium sorption data. Fluoride removal rate in batch system is fast in the first 5 h, decreasing after this time until achieving equilibrium due to pore diffusion. The presence of carbonate and bicarbonate ions in the aqueous solution contributes to a decrease of the fluoride sorption capacity of the bone char by 79 and 31 %, respectively. Regeneration of the F-loaded bone char using 0.5 M NaOH solution leads to a sorption capacity for fluoride of 3.1 mg/g in the second loading cycle. Fluoride breakthrough curve obtained in a fixed-bed column presents an asymmetrical
S
-shaped form, with a slow approach of
C
/
C
0
→ 1.0 due to pore diffusion phenomena. Considering the guideline value for drinking water of 1.5 mg F
−
/L, as recommended by World Health Organization, the service cycle for fluoride removal was of 71.0 h ([F
−
]
feed
∼ 9 mg/L; flow rate = 1 mL/min;
m
sorbent
= 12.6 g). A mass transfer model considering the pore diffusion was able to satisfactorily describe the experimental data obtained in batch and continuous systems.</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-016-7816-5</identifier><identifier>PMID: 27815851</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adsorption ; Animals ; Aquatic Pollution ; Aqueous solutions ; Atmospheric Protection/Air Quality Control/Air Pollution ; Bicarbonates ; Bone and Bones ; Bone composition ; Bone growth ; Bones ; Carbonates ; Cattle ; Diffusion ; Diffusion rate ; Drinking water ; Earth and Environmental Science ; Ecotoxicology ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental science ; Equilibrium ; Female ; Flow rates ; Flow velocity ; Fluorides ; Functional groups ; Hydrogen-Ion Concentration ; Kinetics ; Mass transfer ; Mathematical models ; Mechanical loading ; Phosphates ; Regeneration ; Research Article ; Sodium hydroxide ; Solutions ; Sorption ; Waste Water Technology ; Water Management ; Water Pollution Control ; Water Purification - methods</subject><ispartof>Environmental science and pollution research international, 2017, Vol.24 (3), p.2364-2380</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Environmental Science and Pollution Research is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-e6aa510be6fc240374eb9de4778ebea4b4377b29fd7c2dd95cfb4565486b4f193</citedby><cites>FETCH-LOGICAL-c469t-e6aa510be6fc240374eb9de4778ebea4b4377b29fd7c2dd95cfb4565486b4f193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-016-7816-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-016-7816-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27815851$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nigri, Elbert M.</creatorcontrib><creatorcontrib>Cechinel, Maria Alice. P.</creatorcontrib><creatorcontrib>Mayer, Diego A.</creatorcontrib><creatorcontrib>Mazur, Luciana. P.</creatorcontrib><creatorcontrib>Loureiro, José M.</creatorcontrib><creatorcontrib>Rocha, Sônia D. F.</creatorcontrib><creatorcontrib>Vilar, Vítor J. P.</creatorcontrib><title>Cow bones char as a green sorbent for fluorides removal from aqueous solutions: batch and fixed-bed studies</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>Cow bone char was investigated as sorbent for the defluoridation of aqueous solutions. The cow bone char was characterized in terms of its morphology, chemical composition, and functional groups present on the bone char surface using different analytical techniques: SEM, EDS, N
2
-BET method, and FTIR. Batch equilibrium studies were performed for the bone chars prepared using different procedures. The highest sorption capacities for fluoride were obtained for the acid washed (
q
= 6.2 ± 0.5 mg/g) and Al-doped (
q
= 6.4 ± 0.3 mg/g) bone chars. Langmuir and Freundlich models fitted well the equilibrium sorption data. Fluoride removal rate in batch system is fast in the first 5 h, decreasing after this time until achieving equilibrium due to pore diffusion. The presence of carbonate and bicarbonate ions in the aqueous solution contributes to a decrease of the fluoride sorption capacity of the bone char by 79 and 31 %, respectively. Regeneration of the F-loaded bone char using 0.5 M NaOH solution leads to a sorption capacity for fluoride of 3.1 mg/g in the second loading cycle. Fluoride breakthrough curve obtained in a fixed-bed column presents an asymmetrical
S
-shaped form, with a slow approach of
C
/
C
0
→ 1.0 due to pore diffusion phenomena. Considering the guideline value for drinking water of 1.5 mg F
−
/L, as recommended by World Health Organization, the service cycle for fluoride removal was of 71.0 h ([F
−
]
feed
∼ 9 mg/L; flow rate = 1 mL/min;
m
sorbent
= 12.6 g). A mass transfer model considering the pore diffusion was able to satisfactorily describe the experimental data obtained in batch and continuous systems.</description><subject>Adsorption</subject><subject>Animals</subject><subject>Aquatic Pollution</subject><subject>Aqueous solutions</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Bicarbonates</subject><subject>Bone and Bones</subject><subject>Bone composition</subject><subject>Bone growth</subject><subject>Bones</subject><subject>Carbonates</subject><subject>Cattle</subject><subject>Diffusion</subject><subject>Diffusion rate</subject><subject>Drinking water</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental science</subject><subject>Equilibrium</subject><subject>Female</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Fluorides</subject><subject>Functional groups</subject><subject>Hydrogen-Ion Concentration</subject><subject>Kinetics</subject><subject>Mass transfer</subject><subject>Mathematical models</subject><subject>Mechanical loading</subject><subject>Phosphates</subject><subject>Regeneration</subject><subject>Research Article</subject><subject>Sodium hydroxide</subject><subject>Solutions</subject><subject>Sorption</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Water Purification - methods</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU1rFTEUhoNY7LX6A9xIwI2bsTkzJ8nEnVz8goIbXYdkctJOnZnUZEbtvzeXW0UEoZtkkee8eQ8PY89AvAIh9HkB6KRqBKhG9_WQD9gOFGCj0ZiHbCcMYgMd4il7XMq1EK0wrX7ETtuKy17Cjn3dpx_cp4UKH65c5q5wxy8z0cJLyp6WlceUeZy2lMdQqUxz-u4mHnOaufu2UdpKRadtHdNSXnPv1uGKuyXwOP6k0HgKvKxbGKk8YSfRTYWe3t1n7Mu7t5_3H5qLT-8_7t9cNAMqszaknJMgPKk4tCg6jeRNINS6J08OPXZa-9bEoIc2BCOH6FEqib3yGMF0Z-zlMfcmp1qwrHYey0DT5JZDWwt9D1pCDbwH2ildGyBW9MU_6HXa8lIXsWCkQt0KcaDgSA05lZIp2ps8zi7fWhD2IM0epdkqzR6kWVlnnt8lb36m8Gfit6UKtEeg1KflkvJfX_839ReJ7aHs</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Nigri, Elbert M.</creator><creator>Cechinel, Maria Alice. P.</creator><creator>Mayer, Diego A.</creator><creator>Mazur, Luciana. P.</creator><creator>Loureiro, José M.</creator><creator>Rocha, Sônia D. F.</creator><creator>Vilar, Vítor J. P.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>2017</creationdate><title>Cow bones char as a green sorbent for fluorides removal from aqueous solutions: batch and fixed-bed studies</title><author>Nigri, Elbert M. ; Cechinel, Maria Alice. P. ; Mayer, Diego A. ; Mazur, Luciana. P. ; Loureiro, José M. ; Rocha, Sônia D. F. ; Vilar, Vítor J. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-e6aa510be6fc240374eb9de4778ebea4b4377b29fd7c2dd95cfb4565486b4f193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adsorption</topic><topic>Animals</topic><topic>Aquatic Pollution</topic><topic>Aqueous solutions</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Bicarbonates</topic><topic>Bone and Bones</topic><topic>Bone composition</topic><topic>Bone growth</topic><topic>Bones</topic><topic>Carbonates</topic><topic>Cattle</topic><topic>Diffusion</topic><topic>Diffusion rate</topic><topic>Drinking water</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental science</topic><topic>Equilibrium</topic><topic>Female</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Fluorides</topic><topic>Functional groups</topic><topic>Hydrogen-Ion Concentration</topic><topic>Kinetics</topic><topic>Mass transfer</topic><topic>Mathematical models</topic><topic>Mechanical loading</topic><topic>Phosphates</topic><topic>Regeneration</topic><topic>Research Article</topic><topic>Sodium hydroxide</topic><topic>Solutions</topic><topic>Sorption</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Water Purification - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nigri, Elbert M.</creatorcontrib><creatorcontrib>Cechinel, Maria Alice. P.</creatorcontrib><creatorcontrib>Mayer, Diego A.</creatorcontrib><creatorcontrib>Mazur, Luciana. P.</creatorcontrib><creatorcontrib>Loureiro, José M.</creatorcontrib><creatorcontrib>Rocha, Sônia D. F.</creatorcontrib><creatorcontrib>Vilar, Vítor J. P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nigri, Elbert M.</au><au>Cechinel, Maria Alice. P.</au><au>Mayer, Diego A.</au><au>Mazur, Luciana. P.</au><au>Loureiro, José M.</au><au>Rocha, Sônia D. F.</au><au>Vilar, Vítor J. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cow bones char as a green sorbent for fluorides removal from aqueous solutions: batch and fixed-bed studies</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2017</date><risdate>2017</risdate><volume>24</volume><issue>3</issue><spage>2364</spage><epage>2380</epage><pages>2364-2380</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>Cow bone char was investigated as sorbent for the defluoridation of aqueous solutions. The cow bone char was characterized in terms of its morphology, chemical composition, and functional groups present on the bone char surface using different analytical techniques: SEM, EDS, N
2
-BET method, and FTIR. Batch equilibrium studies were performed for the bone chars prepared using different procedures. The highest sorption capacities for fluoride were obtained for the acid washed (
q
= 6.2 ± 0.5 mg/g) and Al-doped (
q
= 6.4 ± 0.3 mg/g) bone chars. Langmuir and Freundlich models fitted well the equilibrium sorption data. Fluoride removal rate in batch system is fast in the first 5 h, decreasing after this time until achieving equilibrium due to pore diffusion. The presence of carbonate and bicarbonate ions in the aqueous solution contributes to a decrease of the fluoride sorption capacity of the bone char by 79 and 31 %, respectively. Regeneration of the F-loaded bone char using 0.5 M NaOH solution leads to a sorption capacity for fluoride of 3.1 mg/g in the second loading cycle. Fluoride breakthrough curve obtained in a fixed-bed column presents an asymmetrical
S
-shaped form, with a slow approach of
C
/
C
0
→ 1.0 due to pore diffusion phenomena. Considering the guideline value for drinking water of 1.5 mg F
−
/L, as recommended by World Health Organization, the service cycle for fluoride removal was of 71.0 h ([F
−
]
feed
∼ 9 mg/L; flow rate = 1 mL/min;
m
sorbent
= 12.6 g). A mass transfer model considering the pore diffusion was able to satisfactorily describe the experimental data obtained in batch and continuous systems.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>27815851</pmid><doi>10.1007/s11356-016-7816-5</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-1344 |
ispartof | Environmental science and pollution research international, 2017, Vol.24 (3), p.2364-2380 |
issn | 0944-1344 1614-7499 |
language | eng |
recordid | cdi_proquest_miscellaneous_1881751477 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Adsorption Animals Aquatic Pollution Aqueous solutions Atmospheric Protection/Air Quality Control/Air Pollution Bicarbonates Bone and Bones Bone composition Bone growth Bones Carbonates Cattle Diffusion Diffusion rate Drinking water Earth and Environmental Science Ecotoxicology Environment Environmental Chemistry Environmental Health Environmental science Equilibrium Female Flow rates Flow velocity Fluorides Functional groups Hydrogen-Ion Concentration Kinetics Mass transfer Mathematical models Mechanical loading Phosphates Regeneration Research Article Sodium hydroxide Solutions Sorption Waste Water Technology Water Management Water Pollution Control Water Purification - methods |
title | Cow bones char as a green sorbent for fluorides removal from aqueous solutions: batch and fixed-bed studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T16%3A27%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cow%20bones%20char%20as%20a%20green%20sorbent%20for%20fluorides%20removal%20from%20aqueous%20solutions:%20batch%20and%20fixed-bed%20studies&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Nigri,%20Elbert%20M.&rft.date=2017&rft.volume=24&rft.issue=3&rft.spage=2364&rft.epage=2380&rft.pages=2364-2380&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-016-7816-5&rft_dat=%3Cproquest_cross%3E1881751477%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1956472004&rft_id=info:pmid/27815851&rfr_iscdi=true |