Global model fitting to compare survival curves for faecal indicator bacteria and ruminant‐associated genetic markers

Aims To compare decay profiles of ruminant‐ and cattle‐associated molecular markers for faecal contamination and Escherichia coli, facilitating their correct application in water quality studies. Methods and Results We generated decay profiles for cultivable E. coli, a general Bacteroidales genetic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied microbiology 2017-06, Vol.122 (6), p.1704-1713
Hauptverfasser: Brooks, L.E., Field, K.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1713
container_issue 6
container_start_page 1704
container_title Journal of applied microbiology
container_volume 122
creator Brooks, L.E.
Field, K.G.
description Aims To compare decay profiles of ruminant‐ and cattle‐associated molecular markers for faecal contamination and Escherichia coli, facilitating their correct application in water quality studies. Methods and Results We generated decay profiles for cultivable E. coli, a general Bacteroidales genetic marker (GenBac3), ruminant markers (CF128, Rum2Bac) and cattle markers (CowM2, CowM3) using faeces‐seeded mesocosms, and selected best fitting models for each decay profile. Global model fitting tested for differences between decay profiles. After normalizing for initial concentration, decay curves differed significantly between E. coli and all genetic markers except CowM3. Decay curves for CF128 differed from GenBac3 and Rum2Bac, but Rum2Bac and GenBac3 decay profiles did not differ. Despite similar survival profiles for some markers, highly varied initial concentrations affected time to nondetection. Conclusions Decay curves and time until nondetection differed among markers from the same host. However, the Rum2Bac and GenBac3 markers had similar decay profiles and could potentially be investigated further for source allocation using the ratio method. Significance and Impact of the Study As the use of genetic markers for microbial source tracking becomes increasingly common, caution is necessary. Both the shape of decay curves and time to nondetect may differ depending on the marker selected, resulting in possible misinterpretation of results and precluding application of a ‘ratio method’ of source allocation.
doi_str_mv 10.1111/jam.13454
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1881449164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2020905665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3864-a7b5f1a8be1081cd8e21adcaf1f7a2b09b420bd1d7810772a0f37db7d3e68ae93</originalsourceid><addsrcrecordid>eNqF0cFOFTEUBuDGaATBBS9gmrDBxYW205l2loQgajBuZD05bU9JLzPTa9uBsOMRfEafxMpFFybEbnpy8uWkpz8hB5wd83pO1jAd80a28gXZ5U3XrkSnxMvHWq5apsQOeZPzmjHesLZ7TXaErloouUvuLsZoYKRTdDhSH0oJ8zUtkdo4bSAhzUu6DbdV2Fpgpj4m6gFt7YTZBQulNgzYgikAhdnRtExhhrn8fPgBOUcboKCj1zhjCZZOkG4w5X3yysOY8e3TvUeuPpx_O_u4uvx68ens9HJlG10fD8q0noM2yJnm1mkUHJwFz70CYVhvpGDGcac0Z0oJYL5RzijXYKcB-2aPHG3nblL8vmAuwxSyxXGEGeOSB8EE6-undO1_KdeaS9nzTlZ6-A9dxyXNdZGq-l60kjFR1futsinmnNAPmxTq_vcDZ8Pv4IYa3PAYXLXvniYuZkL3V_5JqoKTLbgLI94_P2n4fPplO_IX1Q-kPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899254002</pqid></control><display><type>article</type><title>Global model fitting to compare survival curves for faecal indicator bacteria and ruminant‐associated genetic markers</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Brooks, L.E. ; Field, K.G.</creator><creatorcontrib>Brooks, L.E. ; Field, K.G.</creatorcontrib><description>Aims To compare decay profiles of ruminant‐ and cattle‐associated molecular markers for faecal contamination and Escherichia coli, facilitating their correct application in water quality studies. Methods and Results We generated decay profiles for cultivable E. coli, a general Bacteroidales genetic marker (GenBac3), ruminant markers (CF128, Rum2Bac) and cattle markers (CowM2, CowM3) using faeces‐seeded mesocosms, and selected best fitting models for each decay profile. Global model fitting tested for differences between decay profiles. After normalizing for initial concentration, decay curves differed significantly between E. coli and all genetic markers except CowM3. Decay curves for CF128 differed from GenBac3 and Rum2Bac, but Rum2Bac and GenBac3 decay profiles did not differ. Despite similar survival profiles for some markers, highly varied initial concentrations affected time to nondetection. Conclusions Decay curves and time until nondetection differed among markers from the same host. However, the Rum2Bac and GenBac3 markers had similar decay profiles and could potentially be investigated further for source allocation using the ratio method. Significance and Impact of the Study As the use of genetic markers for microbial source tracking becomes increasingly common, caution is necessary. Both the shape of decay curves and time to nondetect may differ depending on the marker selected, resulting in possible misinterpretation of results and precluding application of a ‘ratio method’ of source allocation.</description><identifier>ISSN: 1364-5072</identifier><identifier>EISSN: 1365-2672</identifier><identifier>DOI: 10.1111/jam.13454</identifier><identifier>PMID: 28345274</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Animals ; Bacteria ; Bacteria - genetics ; Bacteroidales ; Bacteroidetes - genetics ; Cattle ; Contamination ; Curve fitting ; Decay ; E coli ; Environmental Monitoring - methods ; Escherichia coli ; Escherichia coli - genetics ; faecal indicator bacteria ; Fecal coliforms ; Feces ; Feces - microbiology ; Fresh Water - chemistry ; Fresh Water - microbiology ; Genetic Markers ; indicator species ; Markers ; Mesocosms ; microbial source tracking ; Microbiology ; Microorganisms ; model fitting ; Models, Theoretical ; Normalizing ; Polymerase Chain Reaction - methods ; Quality Control ; Ruminants ; ruminant‐associated genetic markers ; Survival ; Water Microbiology ; Water Quality</subject><ispartof>Journal of applied microbiology, 2017-06, Vol.122 (6), p.1704-1713</ispartof><rights>2017 The Society for Applied Microbiology</rights><rights>2017 The Society for Applied Microbiology.</rights><rights>Copyright © 2017 The Society for Applied Microbiology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3864-a7b5f1a8be1081cd8e21adcaf1f7a2b09b420bd1d7810772a0f37db7d3e68ae93</citedby><cites>FETCH-LOGICAL-c3864-a7b5f1a8be1081cd8e21adcaf1f7a2b09b420bd1d7810772a0f37db7d3e68ae93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjam.13454$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjam.13454$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28345274$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brooks, L.E.</creatorcontrib><creatorcontrib>Field, K.G.</creatorcontrib><title>Global model fitting to compare survival curves for faecal indicator bacteria and ruminant‐associated genetic markers</title><title>Journal of applied microbiology</title><addtitle>J Appl Microbiol</addtitle><description>Aims To compare decay profiles of ruminant‐ and cattle‐associated molecular markers for faecal contamination and Escherichia coli, facilitating their correct application in water quality studies. Methods and Results We generated decay profiles for cultivable E. coli, a general Bacteroidales genetic marker (GenBac3), ruminant markers (CF128, Rum2Bac) and cattle markers (CowM2, CowM3) using faeces‐seeded mesocosms, and selected best fitting models for each decay profile. Global model fitting tested for differences between decay profiles. After normalizing for initial concentration, decay curves differed significantly between E. coli and all genetic markers except CowM3. Decay curves for CF128 differed from GenBac3 and Rum2Bac, but Rum2Bac and GenBac3 decay profiles did not differ. Despite similar survival profiles for some markers, highly varied initial concentrations affected time to nondetection. Conclusions Decay curves and time until nondetection differed among markers from the same host. However, the Rum2Bac and GenBac3 markers had similar decay profiles and could potentially be investigated further for source allocation using the ratio method. Significance and Impact of the Study As the use of genetic markers for microbial source tracking becomes increasingly common, caution is necessary. Both the shape of decay curves and time to nondetect may differ depending on the marker selected, resulting in possible misinterpretation of results and precluding application of a ‘ratio method’ of source allocation.</description><subject>Animals</subject><subject>Bacteria</subject><subject>Bacteria - genetics</subject><subject>Bacteroidales</subject><subject>Bacteroidetes - genetics</subject><subject>Cattle</subject><subject>Contamination</subject><subject>Curve fitting</subject><subject>Decay</subject><subject>E coli</subject><subject>Environmental Monitoring - methods</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>faecal indicator bacteria</subject><subject>Fecal coliforms</subject><subject>Feces</subject><subject>Feces - microbiology</subject><subject>Fresh Water - chemistry</subject><subject>Fresh Water - microbiology</subject><subject>Genetic Markers</subject><subject>indicator species</subject><subject>Markers</subject><subject>Mesocosms</subject><subject>microbial source tracking</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>model fitting</subject><subject>Models, Theoretical</subject><subject>Normalizing</subject><subject>Polymerase Chain Reaction - methods</subject><subject>Quality Control</subject><subject>Ruminants</subject><subject>ruminant‐associated genetic markers</subject><subject>Survival</subject><subject>Water Microbiology</subject><subject>Water Quality</subject><issn>1364-5072</issn><issn>1365-2672</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0cFOFTEUBuDGaATBBS9gmrDBxYW205l2loQgajBuZD05bU9JLzPTa9uBsOMRfEafxMpFFybEbnpy8uWkpz8hB5wd83pO1jAd80a28gXZ5U3XrkSnxMvHWq5apsQOeZPzmjHesLZ7TXaErloouUvuLsZoYKRTdDhSH0oJ8zUtkdo4bSAhzUu6DbdV2Fpgpj4m6gFt7YTZBQulNgzYgikAhdnRtExhhrn8fPgBOUcboKCj1zhjCZZOkG4w5X3yysOY8e3TvUeuPpx_O_u4uvx68ens9HJlG10fD8q0noM2yJnm1mkUHJwFz70CYVhvpGDGcac0Z0oJYL5RzijXYKcB-2aPHG3nblL8vmAuwxSyxXGEGeOSB8EE6-undO1_KdeaS9nzTlZ6-A9dxyXNdZGq-l60kjFR1futsinmnNAPmxTq_vcDZ8Pv4IYa3PAYXLXvniYuZkL3V_5JqoKTLbgLI94_P2n4fPplO_IX1Q-kPQ</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Brooks, L.E.</creator><creator>Field, K.G.</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>201706</creationdate><title>Global model fitting to compare survival curves for faecal indicator bacteria and ruminant‐associated genetic markers</title><author>Brooks, L.E. ; Field, K.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3864-a7b5f1a8be1081cd8e21adcaf1f7a2b09b420bd1d7810772a0f37db7d3e68ae93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Bacteria</topic><topic>Bacteria - genetics</topic><topic>Bacteroidales</topic><topic>Bacteroidetes - genetics</topic><topic>Cattle</topic><topic>Contamination</topic><topic>Curve fitting</topic><topic>Decay</topic><topic>E coli</topic><topic>Environmental Monitoring - methods</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>faecal indicator bacteria</topic><topic>Fecal coliforms</topic><topic>Feces</topic><topic>Feces - microbiology</topic><topic>Fresh Water - chemistry</topic><topic>Fresh Water - microbiology</topic><topic>Genetic Markers</topic><topic>indicator species</topic><topic>Markers</topic><topic>Mesocosms</topic><topic>microbial source tracking</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>model fitting</topic><topic>Models, Theoretical</topic><topic>Normalizing</topic><topic>Polymerase Chain Reaction - methods</topic><topic>Quality Control</topic><topic>Ruminants</topic><topic>ruminant‐associated genetic markers</topic><topic>Survival</topic><topic>Water Microbiology</topic><topic>Water Quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brooks, L.E.</creatorcontrib><creatorcontrib>Field, K.G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of applied microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brooks, L.E.</au><au>Field, K.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global model fitting to compare survival curves for faecal indicator bacteria and ruminant‐associated genetic markers</atitle><jtitle>Journal of applied microbiology</jtitle><addtitle>J Appl Microbiol</addtitle><date>2017-06</date><risdate>2017</risdate><volume>122</volume><issue>6</issue><spage>1704</spage><epage>1713</epage><pages>1704-1713</pages><issn>1364-5072</issn><eissn>1365-2672</eissn><abstract>Aims To compare decay profiles of ruminant‐ and cattle‐associated molecular markers for faecal contamination and Escherichia coli, facilitating their correct application in water quality studies. Methods and Results We generated decay profiles for cultivable E. coli, a general Bacteroidales genetic marker (GenBac3), ruminant markers (CF128, Rum2Bac) and cattle markers (CowM2, CowM3) using faeces‐seeded mesocosms, and selected best fitting models for each decay profile. Global model fitting tested for differences between decay profiles. After normalizing for initial concentration, decay curves differed significantly between E. coli and all genetic markers except CowM3. Decay curves for CF128 differed from GenBac3 and Rum2Bac, but Rum2Bac and GenBac3 decay profiles did not differ. Despite similar survival profiles for some markers, highly varied initial concentrations affected time to nondetection. Conclusions Decay curves and time until nondetection differed among markers from the same host. However, the Rum2Bac and GenBac3 markers had similar decay profiles and could potentially be investigated further for source allocation using the ratio method. Significance and Impact of the Study As the use of genetic markers for microbial source tracking becomes increasingly common, caution is necessary. Both the shape of decay curves and time to nondetect may differ depending on the marker selected, resulting in possible misinterpretation of results and precluding application of a ‘ratio method’ of source allocation.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>28345274</pmid><doi>10.1111/jam.13454</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-5072
ispartof Journal of applied microbiology, 2017-06, Vol.122 (6), p.1704-1713
issn 1364-5072
1365-2672
language eng
recordid cdi_proquest_miscellaneous_1881449164
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Oxford University Press Journals All Titles (1996-Current)
subjects Animals
Bacteria
Bacteria - genetics
Bacteroidales
Bacteroidetes - genetics
Cattle
Contamination
Curve fitting
Decay
E coli
Environmental Monitoring - methods
Escherichia coli
Escherichia coli - genetics
faecal indicator bacteria
Fecal coliforms
Feces
Feces - microbiology
Fresh Water - chemistry
Fresh Water - microbiology
Genetic Markers
indicator species
Markers
Mesocosms
microbial source tracking
Microbiology
Microorganisms
model fitting
Models, Theoretical
Normalizing
Polymerase Chain Reaction - methods
Quality Control
Ruminants
ruminant‐associated genetic markers
Survival
Water Microbiology
Water Quality
title Global model fitting to compare survival curves for faecal indicator bacteria and ruminant‐associated genetic markers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A23%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20model%20fitting%20to%20compare%20survival%20curves%20for%20faecal%20indicator%20bacteria%20and%20ruminant%E2%80%90associated%20genetic%20markers&rft.jtitle=Journal%20of%20applied%20microbiology&rft.au=Brooks,%20L.E.&rft.date=2017-06&rft.volume=122&rft.issue=6&rft.spage=1704&rft.epage=1713&rft.pages=1704-1713&rft.issn=1364-5072&rft.eissn=1365-2672&rft_id=info:doi/10.1111/jam.13454&rft_dat=%3Cproquest_cross%3E2020905665%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899254002&rft_id=info:pmid/28345274&rfr_iscdi=true