Mechanical Properties of Organic Semiconductors for Stretchable, Highly Flexible, and Mechanically Robust Electronics

Mechanical deformability underpins many of the advantages of organic semiconductors. The mechanical properties of these materials are, however, diverse, and the molecular characteristics that permit charge transport can render the materials stiff and brittle. This review is a comprehensive descripti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical reviews 2017-05, Vol.117 (9), p.6467-6499
Hauptverfasser: Root, Samuel E, Savagatrup, Suchol, Printz, Adam D, Rodriquez, Daniel, Lipomi, Darren J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6499
container_issue 9
container_start_page 6467
container_title Chemical reviews
container_volume 117
creator Root, Samuel E
Savagatrup, Suchol
Printz, Adam D
Rodriquez, Daniel
Lipomi, Darren J
description Mechanical deformability underpins many of the advantages of organic semiconductors. The mechanical properties of these materials are, however, diverse, and the molecular characteristics that permit charge transport can render the materials stiff and brittle. This review is a comprehensive description of the molecular and morphological parameters that govern the mechanical properties of organic semiconductors. Particular attention is paid to ways in which mechanical deformability and electronic performance can coexist. The review begins with a discussion of flexible and stretchable devices of all types, and in particular the unique characteristics of organic semiconductors. It then discusses the mechanical properties most relevant to deformable devices. In particular, it describes how low modulus, good adhesion, and absolute extensibility prior to fracture enable robust performance, along with mechanical “imperceptibility” if worn on the skin. A description of techniques of metrology precedes a discussion of the mechanical properties of three classes of organic semiconductors: π-conjugated polymers, small molecules, and composites. The discussion of each class of materials focuses on molecular structure and how this structure (and postdeposition processing) influences the solid-state packing structure and thus the mechanical properties. The review concludes with applications of organic semiconductor devices in which every component is intrinsically stretchable or highly flexible.
doi_str_mv 10.1021/acs.chemrev.7b00003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1881447874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1881447874</sourcerecordid><originalsourceid>FETCH-LOGICAL-a484t-d6d0dc41ed550958674e5e9f95a782a1beb720c609db4d760b383487635ec9723</originalsourceid><addsrcrecordid>eNp9kV1rFDEYhYModq3-AkEC3njhbPP9cSmltYVKxep1yCTvdKfMTNZkpth_b7a7WvDC3IScPOe8CQeht5SsKWH0xIeyDhsYM9yvdUvq4s_QikpGGmUseY5WVbINU0oeoVel3NWjlEy_REfMcMG5sSu0fIGw8VMf_IC_5rSFPPdQcOrwdb7d6fgGxj6kKS5hTrngLmV8M2eYq60d4CO-6G83wwM-H-BX_yj4KeKn1Hr1LbVLmfHZAGHOqarlNXrR-aHAm8N-jH6cn30_vWiurj9fnn66arwwYm6iiiQGQSFKSaw0SguQYDsrvTbM0xZazUhQxMZWRK1Iy-vHjFZcQrCa8WP0YZ-7zennAmV2Y18CDIOfIC3FUWOoENpoUdH3_6B3aclTfZ2jlgmmGFe8UnxPhZxKydC5be5Hnx8cJW7XiqutuEMr7tBKdb07ZC_tCPGv508NFTjZAzv309z_RP4Gxd2bnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1924262363</pqid></control><display><type>article</type><title>Mechanical Properties of Organic Semiconductors for Stretchable, Highly Flexible, and Mechanically Robust Electronics</title><source>American Chemical Society Journals</source><creator>Root, Samuel E ; Savagatrup, Suchol ; Printz, Adam D ; Rodriquez, Daniel ; Lipomi, Darren J</creator><creatorcontrib>Root, Samuel E ; Savagatrup, Suchol ; Printz, Adam D ; Rodriquez, Daniel ; Lipomi, Darren J</creatorcontrib><description>Mechanical deformability underpins many of the advantages of organic semiconductors. The mechanical properties of these materials are, however, diverse, and the molecular characteristics that permit charge transport can render the materials stiff and brittle. This review is a comprehensive description of the molecular and morphological parameters that govern the mechanical properties of organic semiconductors. Particular attention is paid to ways in which mechanical deformability and electronic performance can coexist. The review begins with a discussion of flexible and stretchable devices of all types, and in particular the unique characteristics of organic semiconductors. It then discusses the mechanical properties most relevant to deformable devices. In particular, it describes how low modulus, good adhesion, and absolute extensibility prior to fracture enable robust performance, along with mechanical “imperceptibility” if worn on the skin. A description of techniques of metrology precedes a discussion of the mechanical properties of three classes of organic semiconductors: π-conjugated polymers, small molecules, and composites. The discussion of each class of materials focuses on molecular structure and how this structure (and postdeposition processing) influences the solid-state packing structure and thus the mechanical properties. The review concludes with applications of organic semiconductor devices in which every component is intrinsically stretchable or highly flexible.</description><identifier>ISSN: 0009-2665</identifier><identifier>EISSN: 1520-6890</identifier><identifier>DOI: 10.1021/acs.chemrev.7b00003</identifier><identifier>PMID: 28343389</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adhesion ; Brittleness ; Charge transport ; Deformation mechanisms ; Electronics ; Electronics industry ; Formability ; Mechanical properties ; Metrology ; Molecular structure ; Molecules ; Organic semiconductors ; Polymer matrix composites ; Polymers ; Semiconductor devices ; Semiconductors ; Skin</subject><ispartof>Chemical reviews, 2017-05, Vol.117 (9), p.6467-6499</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright American Chemical Society May 10, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a484t-d6d0dc41ed550958674e5e9f95a782a1beb720c609db4d760b383487635ec9723</citedby><cites>FETCH-LOGICAL-a484t-d6d0dc41ed550958674e5e9f95a782a1beb720c609db4d760b383487635ec9723</cites><orcidid>0000-0002-5808-7765</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemrev.7b00003$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemrev.7b00003$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28343389$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Root, Samuel E</creatorcontrib><creatorcontrib>Savagatrup, Suchol</creatorcontrib><creatorcontrib>Printz, Adam D</creatorcontrib><creatorcontrib>Rodriquez, Daniel</creatorcontrib><creatorcontrib>Lipomi, Darren J</creatorcontrib><title>Mechanical Properties of Organic Semiconductors for Stretchable, Highly Flexible, and Mechanically Robust Electronics</title><title>Chemical reviews</title><addtitle>Chem. Rev</addtitle><description>Mechanical deformability underpins many of the advantages of organic semiconductors. The mechanical properties of these materials are, however, diverse, and the molecular characteristics that permit charge transport can render the materials stiff and brittle. This review is a comprehensive description of the molecular and morphological parameters that govern the mechanical properties of organic semiconductors. Particular attention is paid to ways in which mechanical deformability and electronic performance can coexist. The review begins with a discussion of flexible and stretchable devices of all types, and in particular the unique characteristics of organic semiconductors. It then discusses the mechanical properties most relevant to deformable devices. In particular, it describes how low modulus, good adhesion, and absolute extensibility prior to fracture enable robust performance, along with mechanical “imperceptibility” if worn on the skin. A description of techniques of metrology precedes a discussion of the mechanical properties of three classes of organic semiconductors: π-conjugated polymers, small molecules, and composites. The discussion of each class of materials focuses on molecular structure and how this structure (and postdeposition processing) influences the solid-state packing structure and thus the mechanical properties. The review concludes with applications of organic semiconductor devices in which every component is intrinsically stretchable or highly flexible.</description><subject>Adhesion</subject><subject>Brittleness</subject><subject>Charge transport</subject><subject>Deformation mechanisms</subject><subject>Electronics</subject><subject>Electronics industry</subject><subject>Formability</subject><subject>Mechanical properties</subject><subject>Metrology</subject><subject>Molecular structure</subject><subject>Molecules</subject><subject>Organic semiconductors</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Semiconductor devices</subject><subject>Semiconductors</subject><subject>Skin</subject><issn>0009-2665</issn><issn>1520-6890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kV1rFDEYhYModq3-AkEC3njhbPP9cSmltYVKxep1yCTvdKfMTNZkpth_b7a7WvDC3IScPOe8CQeht5SsKWH0xIeyDhsYM9yvdUvq4s_QikpGGmUseY5WVbINU0oeoVel3NWjlEy_REfMcMG5sSu0fIGw8VMf_IC_5rSFPPdQcOrwdb7d6fgGxj6kKS5hTrngLmV8M2eYq60d4CO-6G83wwM-H-BX_yj4KeKn1Hr1LbVLmfHZAGHOqarlNXrR-aHAm8N-jH6cn30_vWiurj9fnn66arwwYm6iiiQGQSFKSaw0SguQYDsrvTbM0xZazUhQxMZWRK1Iy-vHjFZcQrCa8WP0YZ-7zennAmV2Y18CDIOfIC3FUWOoENpoUdH3_6B3aclTfZ2jlgmmGFe8UnxPhZxKydC5be5Hnx8cJW7XiqutuEMr7tBKdb07ZC_tCPGv508NFTjZAzv309z_RP4Gxd2bnQ</recordid><startdate>20170510</startdate><enddate>20170510</enddate><creator>Root, Samuel E</creator><creator>Savagatrup, Suchol</creator><creator>Printz, Adam D</creator><creator>Rodriquez, Daniel</creator><creator>Lipomi, Darren J</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5808-7765</orcidid></search><sort><creationdate>20170510</creationdate><title>Mechanical Properties of Organic Semiconductors for Stretchable, Highly Flexible, and Mechanically Robust Electronics</title><author>Root, Samuel E ; Savagatrup, Suchol ; Printz, Adam D ; Rodriquez, Daniel ; Lipomi, Darren J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a484t-d6d0dc41ed550958674e5e9f95a782a1beb720c609db4d760b383487635ec9723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adhesion</topic><topic>Brittleness</topic><topic>Charge transport</topic><topic>Deformation mechanisms</topic><topic>Electronics</topic><topic>Electronics industry</topic><topic>Formability</topic><topic>Mechanical properties</topic><topic>Metrology</topic><topic>Molecular structure</topic><topic>Molecules</topic><topic>Organic semiconductors</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Semiconductor devices</topic><topic>Semiconductors</topic><topic>Skin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Root, Samuel E</creatorcontrib><creatorcontrib>Savagatrup, Suchol</creatorcontrib><creatorcontrib>Printz, Adam D</creatorcontrib><creatorcontrib>Rodriquez, Daniel</creatorcontrib><creatorcontrib>Lipomi, Darren J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Chemical reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Root, Samuel E</au><au>Savagatrup, Suchol</au><au>Printz, Adam D</au><au>Rodriquez, Daniel</au><au>Lipomi, Darren J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical Properties of Organic Semiconductors for Stretchable, Highly Flexible, and Mechanically Robust Electronics</atitle><jtitle>Chemical reviews</jtitle><addtitle>Chem. Rev</addtitle><date>2017-05-10</date><risdate>2017</risdate><volume>117</volume><issue>9</issue><spage>6467</spage><epage>6499</epage><pages>6467-6499</pages><issn>0009-2665</issn><eissn>1520-6890</eissn><abstract>Mechanical deformability underpins many of the advantages of organic semiconductors. The mechanical properties of these materials are, however, diverse, and the molecular characteristics that permit charge transport can render the materials stiff and brittle. This review is a comprehensive description of the molecular and morphological parameters that govern the mechanical properties of organic semiconductors. Particular attention is paid to ways in which mechanical deformability and electronic performance can coexist. The review begins with a discussion of flexible and stretchable devices of all types, and in particular the unique characteristics of organic semiconductors. It then discusses the mechanical properties most relevant to deformable devices. In particular, it describes how low modulus, good adhesion, and absolute extensibility prior to fracture enable robust performance, along with mechanical “imperceptibility” if worn on the skin. A description of techniques of metrology precedes a discussion of the mechanical properties of three classes of organic semiconductors: π-conjugated polymers, small molecules, and composites. The discussion of each class of materials focuses on molecular structure and how this structure (and postdeposition processing) influences the solid-state packing structure and thus the mechanical properties. The review concludes with applications of organic semiconductor devices in which every component is intrinsically stretchable or highly flexible.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28343389</pmid><doi>10.1021/acs.chemrev.7b00003</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0002-5808-7765</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-2665
ispartof Chemical reviews, 2017-05, Vol.117 (9), p.6467-6499
issn 0009-2665
1520-6890
language eng
recordid cdi_proquest_miscellaneous_1881447874
source American Chemical Society Journals
subjects Adhesion
Brittleness
Charge transport
Deformation mechanisms
Electronics
Electronics industry
Formability
Mechanical properties
Metrology
Molecular structure
Molecules
Organic semiconductors
Polymer matrix composites
Polymers
Semiconductor devices
Semiconductors
Skin
title Mechanical Properties of Organic Semiconductors for Stretchable, Highly Flexible, and Mechanically Robust Electronics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A57%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20Properties%20of%20Organic%20Semiconductors%20for%20Stretchable,%20Highly%20Flexible,%20and%20Mechanically%20Robust%20Electronics&rft.jtitle=Chemical%20reviews&rft.au=Root,%20Samuel%20E&rft.date=2017-05-10&rft.volume=117&rft.issue=9&rft.spage=6467&rft.epage=6499&rft.pages=6467-6499&rft.issn=0009-2665&rft.eissn=1520-6890&rft_id=info:doi/10.1021/acs.chemrev.7b00003&rft_dat=%3Cproquest_cross%3E1881447874%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1924262363&rft_id=info:pmid/28343389&rfr_iscdi=true