Facile microfluidic production of composite polymer core-shell microcapsules and crescent-shaped microparticles
[Display omitted] Core-shell microcapsules and crescent-shaped microparticles can be used as picolitre bioreactors for cell culture and microwells for cell trapping/immobilisation, respectively. Monodisperse polylactic acid (PLA) core-shell microcapsules with a diameter above 200μm, a shell thicknes...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2017-07, Vol.498, p.387-394 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 394 |
---|---|
container_issue | |
container_start_page | 387 |
container_title | Journal of colloid and interface science |
container_volume | 498 |
creator | Ekanem, Ekanem E. Zhang, Zilin Vladisavljević, Goran T. |
description | [Display omitted]
Core-shell microcapsules and crescent-shaped microparticles can be used as picolitre bioreactors for cell culture and microwells for cell trapping/immobilisation, respectively.
Monodisperse polylactic acid (PLA) core-shell microcapsules with a diameter above 200μm, a shell thickness of 10μm, and 96% water entrapment efficiency were produced by solvent evaporation from microfluidically generated W/O/W emulsion drops with core-shell structure, and used to encapsulate Saccharomyces cerevisiae yeast cells in their aqueous cores. The morphological changes of the capsules stained with Nile red were studied over 14days under different osmotic pressure and pH gradients.
The shell retained its integrity under isotonic conditions, but buckling and particle crumbling occurred in a hypertonic solution. When the capsules containing 5wt% aqueous Eudragit® S 100 solution in the core were incubated in 10−4M HCl solution, H+ diffused through the PLA film into the core causing an ionic gelation of the inner phase and its phase separation into polymer-rich and water-rich regions, due to the transition of Eudragit from a hydrophilic to hydrophobic state. Crescent-shaped composite microparticles with Eudragit cores and PLA shells were fabricated by drying core-shell microcapsules with gelled cores, due to the collapse of PLA shells encompassing water-rich crescent regions. |
doi_str_mv | 10.1016/j.jcis.2017.03.067 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1881446753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979717303302</els_id><sourcerecordid>1881446753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-5ff878d3856a95dd47508a04b14a4dd9055b1e9a9be45a95cee5b8316270df633</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVoyG42-QM9FB97sTuyJMuGXsqSj0Kgl-YsZGlMtciWK9mF_ffV4rTHnAaG532ZeQj5SKGiQJsvp-pkXKpqoLICVkEjr8ieQidKSYF9IHuAmpad7OSO3KZ0AqBUiO6G7OqWcUZZsyfhURvnsRidiWHwq7POFHMMdjWLC1MRhsKEcQ7JLVjMwZ9HjHkTsUy_0PstZ_ScVo-p0JMtTMRkcFoyoGe0GzHruDiTkTtyPWif8P5tHsjr48PP43P58uPp-_HbS2k4k0sphqGVrWWtaHQnrOVSQKuB95Rrbm0HQvQUO931yEUmDKLoW0abWoIdGsYO5PPWm3_5vWJa1OjyWd7rCcOaFG1bynkjxQWtNzTfmVLEQc3RjTqeFQV1Ea1O6iJaXUQrYCqLzqFPb_1rP6L9H_lnNgNfNwDzl38cRpWMw8mgdRHNomxw7_X_BfwOkbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1881446753</pqid></control><display><type>article</type><title>Facile microfluidic production of composite polymer core-shell microcapsules and crescent-shaped microparticles</title><source>Access via ScienceDirect (Elsevier)</source><creator>Ekanem, Ekanem E. ; Zhang, Zilin ; Vladisavljević, Goran T.</creator><creatorcontrib>Ekanem, Ekanem E. ; Zhang, Zilin ; Vladisavljević, Goran T.</creatorcontrib><description>[Display omitted]
Core-shell microcapsules and crescent-shaped microparticles can be used as picolitre bioreactors for cell culture and microwells for cell trapping/immobilisation, respectively.
Monodisperse polylactic acid (PLA) core-shell microcapsules with a diameter above 200μm, a shell thickness of 10μm, and 96% water entrapment efficiency were produced by solvent evaporation from microfluidically generated W/O/W emulsion drops with core-shell structure, and used to encapsulate Saccharomyces cerevisiae yeast cells in their aqueous cores. The morphological changes of the capsules stained with Nile red were studied over 14days under different osmotic pressure and pH gradients.
The shell retained its integrity under isotonic conditions, but buckling and particle crumbling occurred in a hypertonic solution. When the capsules containing 5wt% aqueous Eudragit® S 100 solution in the core were incubated in 10−4M HCl solution, H+ diffused through the PLA film into the core causing an ionic gelation of the inner phase and its phase separation into polymer-rich and water-rich regions, due to the transition of Eudragit from a hydrophilic to hydrophobic state. Crescent-shaped composite microparticles with Eudragit cores and PLA shells were fabricated by drying core-shell microcapsules with gelled cores, due to the collapse of PLA shells encompassing water-rich crescent regions.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2017.03.067</identifier><identifier>PMID: 28343136</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biodegradable polymers ; Cell encapsulation ; Core-shell microcapsules ; Crescent particles ; Eudragit ; Ionic gelation ; Microfluidics</subject><ispartof>Journal of colloid and interface science, 2017-07, Vol.498, p.387-394</ispartof><rights>2017 The Authors</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-5ff878d3856a95dd47508a04b14a4dd9055b1e9a9be45a95cee5b8316270df633</citedby><cites>FETCH-LOGICAL-c437t-5ff878d3856a95dd47508a04b14a4dd9055b1e9a9be45a95cee5b8316270df633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2017.03.067$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28343136$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ekanem, Ekanem E.</creatorcontrib><creatorcontrib>Zhang, Zilin</creatorcontrib><creatorcontrib>Vladisavljević, Goran T.</creatorcontrib><title>Facile microfluidic production of composite polymer core-shell microcapsules and crescent-shaped microparticles</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted]
Core-shell microcapsules and crescent-shaped microparticles can be used as picolitre bioreactors for cell culture and microwells for cell trapping/immobilisation, respectively.
Monodisperse polylactic acid (PLA) core-shell microcapsules with a diameter above 200μm, a shell thickness of 10μm, and 96% water entrapment efficiency were produced by solvent evaporation from microfluidically generated W/O/W emulsion drops with core-shell structure, and used to encapsulate Saccharomyces cerevisiae yeast cells in their aqueous cores. The morphological changes of the capsules stained with Nile red were studied over 14days under different osmotic pressure and pH gradients.
The shell retained its integrity under isotonic conditions, but buckling and particle crumbling occurred in a hypertonic solution. When the capsules containing 5wt% aqueous Eudragit® S 100 solution in the core were incubated in 10−4M HCl solution, H+ diffused through the PLA film into the core causing an ionic gelation of the inner phase and its phase separation into polymer-rich and water-rich regions, due to the transition of Eudragit from a hydrophilic to hydrophobic state. Crescent-shaped composite microparticles with Eudragit cores and PLA shells were fabricated by drying core-shell microcapsules with gelled cores, due to the collapse of PLA shells encompassing water-rich crescent regions.</description><subject>Biodegradable polymers</subject><subject>Cell encapsulation</subject><subject>Core-shell microcapsules</subject><subject>Crescent particles</subject><subject>Eudragit</subject><subject>Ionic gelation</subject><subject>Microfluidics</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1r3DAQhkVoyG42-QM9FB97sTuyJMuGXsqSj0Kgl-YsZGlMtciWK9mF_ffV4rTHnAaG532ZeQj5SKGiQJsvp-pkXKpqoLICVkEjr8ieQidKSYF9IHuAmpad7OSO3KZ0AqBUiO6G7OqWcUZZsyfhURvnsRidiWHwq7POFHMMdjWLC1MRhsKEcQ7JLVjMwZ9HjHkTsUy_0PstZ_ScVo-p0JMtTMRkcFoyoGe0GzHruDiTkTtyPWif8P5tHsjr48PP43P58uPp-_HbS2k4k0sphqGVrWWtaHQnrOVSQKuB95Rrbm0HQvQUO931yEUmDKLoW0abWoIdGsYO5PPWm3_5vWJa1OjyWd7rCcOaFG1bynkjxQWtNzTfmVLEQc3RjTqeFQV1Ea1O6iJaXUQrYCqLzqFPb_1rP6L9H_lnNgNfNwDzl38cRpWMw8mgdRHNomxw7_X_BfwOkbA</recordid><startdate>20170715</startdate><enddate>20170715</enddate><creator>Ekanem, Ekanem E.</creator><creator>Zhang, Zilin</creator><creator>Vladisavljević, Goran T.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170715</creationdate><title>Facile microfluidic production of composite polymer core-shell microcapsules and crescent-shaped microparticles</title><author>Ekanem, Ekanem E. ; Zhang, Zilin ; Vladisavljević, Goran T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-5ff878d3856a95dd47508a04b14a4dd9055b1e9a9be45a95cee5b8316270df633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biodegradable polymers</topic><topic>Cell encapsulation</topic><topic>Core-shell microcapsules</topic><topic>Crescent particles</topic><topic>Eudragit</topic><topic>Ionic gelation</topic><topic>Microfluidics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ekanem, Ekanem E.</creatorcontrib><creatorcontrib>Zhang, Zilin</creatorcontrib><creatorcontrib>Vladisavljević, Goran T.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ekanem, Ekanem E.</au><au>Zhang, Zilin</au><au>Vladisavljević, Goran T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facile microfluidic production of composite polymer core-shell microcapsules and crescent-shaped microparticles</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2017-07-15</date><risdate>2017</risdate><volume>498</volume><spage>387</spage><epage>394</epage><pages>387-394</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted]
Core-shell microcapsules and crescent-shaped microparticles can be used as picolitre bioreactors for cell culture and microwells for cell trapping/immobilisation, respectively.
Monodisperse polylactic acid (PLA) core-shell microcapsules with a diameter above 200μm, a shell thickness of 10μm, and 96% water entrapment efficiency were produced by solvent evaporation from microfluidically generated W/O/W emulsion drops with core-shell structure, and used to encapsulate Saccharomyces cerevisiae yeast cells in their aqueous cores. The morphological changes of the capsules stained with Nile red were studied over 14days under different osmotic pressure and pH gradients.
The shell retained its integrity under isotonic conditions, but buckling and particle crumbling occurred in a hypertonic solution. When the capsules containing 5wt% aqueous Eudragit® S 100 solution in the core were incubated in 10−4M HCl solution, H+ diffused through the PLA film into the core causing an ionic gelation of the inner phase and its phase separation into polymer-rich and water-rich regions, due to the transition of Eudragit from a hydrophilic to hydrophobic state. Crescent-shaped composite microparticles with Eudragit cores and PLA shells were fabricated by drying core-shell microcapsules with gelled cores, due to the collapse of PLA shells encompassing water-rich crescent regions.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28343136</pmid><doi>10.1016/j.jcis.2017.03.067</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9797 |
ispartof | Journal of colloid and interface science, 2017-07, Vol.498, p.387-394 |
issn | 0021-9797 1095-7103 |
language | eng |
recordid | cdi_proquest_miscellaneous_1881446753 |
source | Access via ScienceDirect (Elsevier) |
subjects | Biodegradable polymers Cell encapsulation Core-shell microcapsules Crescent particles Eudragit Ionic gelation Microfluidics |
title | Facile microfluidic production of composite polymer core-shell microcapsules and crescent-shaped microparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A31%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facile%20microfluidic%20production%20of%20composite%20polymer%20core-shell%20microcapsules%20and%20crescent-shaped%20microparticles&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Ekanem,%20Ekanem%20E.&rft.date=2017-07-15&rft.volume=498&rft.spage=387&rft.epage=394&rft.pages=387-394&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2017.03.067&rft_dat=%3Cproquest_cross%3E1881446753%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1881446753&rft_id=info:pmid/28343136&rft_els_id=S0021979717303302&rfr_iscdi=true |