Facile microfluidic production of composite polymer core-shell microcapsules and crescent-shaped microparticles

[Display omitted] Core-shell microcapsules and crescent-shaped microparticles can be used as picolitre bioreactors for cell culture and microwells for cell trapping/immobilisation, respectively. Monodisperse polylactic acid (PLA) core-shell microcapsules with a diameter above 200μm, a shell thicknes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2017-07, Vol.498, p.387-394
Hauptverfasser: Ekanem, Ekanem E., Zhang, Zilin, Vladisavljević, Goran T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 394
container_issue
container_start_page 387
container_title Journal of colloid and interface science
container_volume 498
creator Ekanem, Ekanem E.
Zhang, Zilin
Vladisavljević, Goran T.
description [Display omitted] Core-shell microcapsules and crescent-shaped microparticles can be used as picolitre bioreactors for cell culture and microwells for cell trapping/immobilisation, respectively. Monodisperse polylactic acid (PLA) core-shell microcapsules with a diameter above 200μm, a shell thickness of 10μm, and 96% water entrapment efficiency were produced by solvent evaporation from microfluidically generated W/O/W emulsion drops with core-shell structure, and used to encapsulate Saccharomyces cerevisiae yeast cells in their aqueous cores. The morphological changes of the capsules stained with Nile red were studied over 14days under different osmotic pressure and pH gradients. The shell retained its integrity under isotonic conditions, but buckling and particle crumbling occurred in a hypertonic solution. When the capsules containing 5wt% aqueous Eudragit® S 100 solution in the core were incubated in 10−4M HCl solution, H+ diffused through the PLA film into the core causing an ionic gelation of the inner phase and its phase separation into polymer-rich and water-rich regions, due to the transition of Eudragit from a hydrophilic to hydrophobic state. Crescent-shaped composite microparticles with Eudragit cores and PLA shells were fabricated by drying core-shell microcapsules with gelled cores, due to the collapse of PLA shells encompassing water-rich crescent regions.
doi_str_mv 10.1016/j.jcis.2017.03.067
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1881446753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979717303302</els_id><sourcerecordid>1881446753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-5ff878d3856a95dd47508a04b14a4dd9055b1e9a9be45a95cee5b8316270df633</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVoyG42-QM9FB97sTuyJMuGXsqSj0Kgl-YsZGlMtciWK9mF_ffV4rTHnAaG532ZeQj5SKGiQJsvp-pkXKpqoLICVkEjr8ieQidKSYF9IHuAmpad7OSO3KZ0AqBUiO6G7OqWcUZZsyfhURvnsRidiWHwq7POFHMMdjWLC1MRhsKEcQ7JLVjMwZ9HjHkTsUy_0PstZ_ScVo-p0JMtTMRkcFoyoGe0GzHruDiTkTtyPWif8P5tHsjr48PP43P58uPp-_HbS2k4k0sphqGVrWWtaHQnrOVSQKuB95Rrbm0HQvQUO931yEUmDKLoW0abWoIdGsYO5PPWm3_5vWJa1OjyWd7rCcOaFG1bynkjxQWtNzTfmVLEQc3RjTqeFQV1Ea1O6iJaXUQrYCqLzqFPb_1rP6L9H_lnNgNfNwDzl38cRpWMw8mgdRHNomxw7_X_BfwOkbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1881446753</pqid></control><display><type>article</type><title>Facile microfluidic production of composite polymer core-shell microcapsules and crescent-shaped microparticles</title><source>Access via ScienceDirect (Elsevier)</source><creator>Ekanem, Ekanem E. ; Zhang, Zilin ; Vladisavljević, Goran T.</creator><creatorcontrib>Ekanem, Ekanem E. ; Zhang, Zilin ; Vladisavljević, Goran T.</creatorcontrib><description>[Display omitted] Core-shell microcapsules and crescent-shaped microparticles can be used as picolitre bioreactors for cell culture and microwells for cell trapping/immobilisation, respectively. Monodisperse polylactic acid (PLA) core-shell microcapsules with a diameter above 200μm, a shell thickness of 10μm, and 96% water entrapment efficiency were produced by solvent evaporation from microfluidically generated W/O/W emulsion drops with core-shell structure, and used to encapsulate Saccharomyces cerevisiae yeast cells in their aqueous cores. The morphological changes of the capsules stained with Nile red were studied over 14days under different osmotic pressure and pH gradients. The shell retained its integrity under isotonic conditions, but buckling and particle crumbling occurred in a hypertonic solution. When the capsules containing 5wt% aqueous Eudragit® S 100 solution in the core were incubated in 10−4M HCl solution, H+ diffused through the PLA film into the core causing an ionic gelation of the inner phase and its phase separation into polymer-rich and water-rich regions, due to the transition of Eudragit from a hydrophilic to hydrophobic state. Crescent-shaped composite microparticles with Eudragit cores and PLA shells were fabricated by drying core-shell microcapsules with gelled cores, due to the collapse of PLA shells encompassing water-rich crescent regions.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2017.03.067</identifier><identifier>PMID: 28343136</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biodegradable polymers ; Cell encapsulation ; Core-shell microcapsules ; Crescent particles ; Eudragit ; Ionic gelation ; Microfluidics</subject><ispartof>Journal of colloid and interface science, 2017-07, Vol.498, p.387-394</ispartof><rights>2017 The Authors</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-5ff878d3856a95dd47508a04b14a4dd9055b1e9a9be45a95cee5b8316270df633</citedby><cites>FETCH-LOGICAL-c437t-5ff878d3856a95dd47508a04b14a4dd9055b1e9a9be45a95cee5b8316270df633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2017.03.067$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28343136$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ekanem, Ekanem E.</creatorcontrib><creatorcontrib>Zhang, Zilin</creatorcontrib><creatorcontrib>Vladisavljević, Goran T.</creatorcontrib><title>Facile microfluidic production of composite polymer core-shell microcapsules and crescent-shaped microparticles</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted] Core-shell microcapsules and crescent-shaped microparticles can be used as picolitre bioreactors for cell culture and microwells for cell trapping/immobilisation, respectively. Monodisperse polylactic acid (PLA) core-shell microcapsules with a diameter above 200μm, a shell thickness of 10μm, and 96% water entrapment efficiency were produced by solvent evaporation from microfluidically generated W/O/W emulsion drops with core-shell structure, and used to encapsulate Saccharomyces cerevisiae yeast cells in their aqueous cores. The morphological changes of the capsules stained with Nile red were studied over 14days under different osmotic pressure and pH gradients. The shell retained its integrity under isotonic conditions, but buckling and particle crumbling occurred in a hypertonic solution. When the capsules containing 5wt% aqueous Eudragit® S 100 solution in the core were incubated in 10−4M HCl solution, H+ diffused through the PLA film into the core causing an ionic gelation of the inner phase and its phase separation into polymer-rich and water-rich regions, due to the transition of Eudragit from a hydrophilic to hydrophobic state. Crescent-shaped composite microparticles with Eudragit cores and PLA shells were fabricated by drying core-shell microcapsules with gelled cores, due to the collapse of PLA shells encompassing water-rich crescent regions.</description><subject>Biodegradable polymers</subject><subject>Cell encapsulation</subject><subject>Core-shell microcapsules</subject><subject>Crescent particles</subject><subject>Eudragit</subject><subject>Ionic gelation</subject><subject>Microfluidics</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1r3DAQhkVoyG42-QM9FB97sTuyJMuGXsqSj0Kgl-YsZGlMtciWK9mF_ffV4rTHnAaG532ZeQj5SKGiQJsvp-pkXKpqoLICVkEjr8ieQidKSYF9IHuAmpad7OSO3KZ0AqBUiO6G7OqWcUZZsyfhURvnsRidiWHwq7POFHMMdjWLC1MRhsKEcQ7JLVjMwZ9HjHkTsUy_0PstZ_ScVo-p0JMtTMRkcFoyoGe0GzHruDiTkTtyPWif8P5tHsjr48PP43P58uPp-_HbS2k4k0sphqGVrWWtaHQnrOVSQKuB95Rrbm0HQvQUO931yEUmDKLoW0abWoIdGsYO5PPWm3_5vWJa1OjyWd7rCcOaFG1bynkjxQWtNzTfmVLEQc3RjTqeFQV1Ea1O6iJaXUQrYCqLzqFPb_1rP6L9H_lnNgNfNwDzl38cRpWMw8mgdRHNomxw7_X_BfwOkbA</recordid><startdate>20170715</startdate><enddate>20170715</enddate><creator>Ekanem, Ekanem E.</creator><creator>Zhang, Zilin</creator><creator>Vladisavljević, Goran T.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170715</creationdate><title>Facile microfluidic production of composite polymer core-shell microcapsules and crescent-shaped microparticles</title><author>Ekanem, Ekanem E. ; Zhang, Zilin ; Vladisavljević, Goran T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-5ff878d3856a95dd47508a04b14a4dd9055b1e9a9be45a95cee5b8316270df633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biodegradable polymers</topic><topic>Cell encapsulation</topic><topic>Core-shell microcapsules</topic><topic>Crescent particles</topic><topic>Eudragit</topic><topic>Ionic gelation</topic><topic>Microfluidics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ekanem, Ekanem E.</creatorcontrib><creatorcontrib>Zhang, Zilin</creatorcontrib><creatorcontrib>Vladisavljević, Goran T.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ekanem, Ekanem E.</au><au>Zhang, Zilin</au><au>Vladisavljević, Goran T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facile microfluidic production of composite polymer core-shell microcapsules and crescent-shaped microparticles</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2017-07-15</date><risdate>2017</risdate><volume>498</volume><spage>387</spage><epage>394</epage><pages>387-394</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted] Core-shell microcapsules and crescent-shaped microparticles can be used as picolitre bioreactors for cell culture and microwells for cell trapping/immobilisation, respectively. Monodisperse polylactic acid (PLA) core-shell microcapsules with a diameter above 200μm, a shell thickness of 10μm, and 96% water entrapment efficiency were produced by solvent evaporation from microfluidically generated W/O/W emulsion drops with core-shell structure, and used to encapsulate Saccharomyces cerevisiae yeast cells in their aqueous cores. The morphological changes of the capsules stained with Nile red were studied over 14days under different osmotic pressure and pH gradients. The shell retained its integrity under isotonic conditions, but buckling and particle crumbling occurred in a hypertonic solution. When the capsules containing 5wt% aqueous Eudragit® S 100 solution in the core were incubated in 10−4M HCl solution, H+ diffused through the PLA film into the core causing an ionic gelation of the inner phase and its phase separation into polymer-rich and water-rich regions, due to the transition of Eudragit from a hydrophilic to hydrophobic state. Crescent-shaped composite microparticles with Eudragit cores and PLA shells were fabricated by drying core-shell microcapsules with gelled cores, due to the collapse of PLA shells encompassing water-rich crescent regions.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28343136</pmid><doi>10.1016/j.jcis.2017.03.067</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2017-07, Vol.498, p.387-394
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_1881446753
source Access via ScienceDirect (Elsevier)
subjects Biodegradable polymers
Cell encapsulation
Core-shell microcapsules
Crescent particles
Eudragit
Ionic gelation
Microfluidics
title Facile microfluidic production of composite polymer core-shell microcapsules and crescent-shaped microparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A31%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facile%20microfluidic%20production%20of%20composite%20polymer%20core-shell%20microcapsules%20and%20crescent-shaped%20microparticles&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Ekanem,%20Ekanem%20E.&rft.date=2017-07-15&rft.volume=498&rft.spage=387&rft.epage=394&rft.pages=387-394&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2017.03.067&rft_dat=%3Cproquest_cross%3E1881446753%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1881446753&rft_id=info:pmid/28343136&rft_els_id=S0021979717303302&rfr_iscdi=true