Impact of PEG Chain Length on the Physical Properties and Bioactivity of PEGylated Chitosan/siRNA Nanoparticles in Vitro and in Vivo
PEGylation of cationic polyplexes is a promising approach to enhance the stability and reduce unspecific interaction with biological components. Herein, we systematically investigate the impact of PEGylation on physical and biological properties of chitosan/siRNA polyplexes. A series of chitosan-PEG...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2017-04, Vol.9 (14), p.12203-12216 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12216 |
---|---|
container_issue | 14 |
container_start_page | 12203 |
container_title | ACS applied materials & interfaces |
container_volume | 9 |
creator | Yang, Chuanxu Gao, Shan Dagnæs-Hansen, Frederik Jakobsen, Maria Kjems, Jørgen |
description | PEGylation of cationic polyplexes is a promising approach to enhance the stability and reduce unspecific interaction with biological components. Herein, we systematically investigate the impact of PEGylation on physical and biological properties of chitosan/siRNA polyplexes. A series of chitosan-PEG copolymers (CS-PEG2k, CS-PEG5k and CS-PEG10k) were synthesized with similar PEG mass content but with different molecular weight. PEGylation with higher molecular weight and less grafting degree resulted in smaller and more compacted nanoparticles with relatively higher surface charge. PEGylated polyplexes showed distinct mechanism of endocytosis, which was macropinocytosis and caveolae-dependent and clathrin-independent. In vitro silencing efficiency in HeLa and H1299 cells was significantly improved by PEGylation and CS-PEG5k/siRNA achieved the highest knockdown efficiency. Efficient silence of ribonucleotide reductase subunit M2 (RRM2) in HeLa cells by CS-PEG5k/siRRM2 significantly induced cell cycle arrest and inhibited cell proliferation. In addition, PEGylation significantly inhibited macrophage phagocytosis and unspecific interaction with red blood cells (RBCs). Significant extension of in vivo circulation was achieved only with high molecular weight PEG modification (CS-PEG10k), whereas all CS/siRNA and CS-PEG/siRNA nanoparticles showed similar pattern of biodistribution with major accumulation in liver and kidney. These results imply that PEGylation with higher molecular weight PEG and less grafting rate is a promising strategy to improve chitosan/siRNA nanocomplexes performance both in vitro and in vivo. |
doi_str_mv | 10.1021/acsami.6b16556 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880471294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880471294</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-cdc12dae7b19c8c2e8d44bff0474a24c979ce27ae2f11e6a3d9275cf4873e44b3</originalsourceid><addsrcrecordid>eNp1kM1LwzAYh4MoOj-uHiVHEbY1afp11OEXjDlEvZa36VsbaZuaZIPe_cON2_TmKQk8zwP5EXLOggkLOJuCtNCqSVywOIriPTJimRDjlEd8_-8uxBE5tvYjCOKQB9EhOeJpGPKUZyPy9dj2IB3VFV3e3tNZDaqjc-zeXU11R12NdFkPVklo6NLoHo1TaCl0Jb1R2ptqrdyw04cGHJY-opy20E2tel5c0wV0ugfvycabPv-mnNGbxOax1qfkoILG4tnuPCGvd7cvs4fx_On-cXY9H0OYxW4sS8l4CZgULJOp5JiWQhRVFYhEABcySzKJPAHkFWMYQ1hmPIlkJdIkRE-GJ-Ry2-2N_lyhdXmrrMSmgQ71yuYsTX2L8Ux4dLJFpdHWGqzy3qgWzJCzIP9ZPt8un--W98LFrr0qWiz_8N-pPXC1BbyYf-iV6fxX_6t9A5Agjwc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880471294</pqid></control><display><type>article</type><title>Impact of PEG Chain Length on the Physical Properties and Bioactivity of PEGylated Chitosan/siRNA Nanoparticles in Vitro and in Vivo</title><source>ACS Publications</source><source>MEDLINE</source><creator>Yang, Chuanxu ; Gao, Shan ; Dagnæs-Hansen, Frederik ; Jakobsen, Maria ; Kjems, Jørgen</creator><creatorcontrib>Yang, Chuanxu ; Gao, Shan ; Dagnæs-Hansen, Frederik ; Jakobsen, Maria ; Kjems, Jørgen</creatorcontrib><description>PEGylation of cationic polyplexes is a promising approach to enhance the stability and reduce unspecific interaction with biological components. Herein, we systematically investigate the impact of PEGylation on physical and biological properties of chitosan/siRNA polyplexes. A series of chitosan-PEG copolymers (CS-PEG2k, CS-PEG5k and CS-PEG10k) were synthesized with similar PEG mass content but with different molecular weight. PEGylation with higher molecular weight and less grafting degree resulted in smaller and more compacted nanoparticles with relatively higher surface charge. PEGylated polyplexes showed distinct mechanism of endocytosis, which was macropinocytosis and caveolae-dependent and clathrin-independent. In vitro silencing efficiency in HeLa and H1299 cells was significantly improved by PEGylation and CS-PEG5k/siRNA achieved the highest knockdown efficiency. Efficient silence of ribonucleotide reductase subunit M2 (RRM2) in HeLa cells by CS-PEG5k/siRRM2 significantly induced cell cycle arrest and inhibited cell proliferation. In addition, PEGylation significantly inhibited macrophage phagocytosis and unspecific interaction with red blood cells (RBCs). Significant extension of in vivo circulation was achieved only with high molecular weight PEG modification (CS-PEG10k), whereas all CS/siRNA and CS-PEG/siRNA nanoparticles showed similar pattern of biodistribution with major accumulation in liver and kidney. These results imply that PEGylation with higher molecular weight PEG and less grafting rate is a promising strategy to improve chitosan/siRNA nanocomplexes performance both in vitro and in vivo.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.6b16556</identifier><identifier>PMID: 28332829</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Cell Line, Tumor ; Chitosan ; Humans ; Nanoparticles ; Polyethylene Glycols ; RNA, Small Interfering ; Tissue Distribution</subject><ispartof>ACS applied materials & interfaces, 2017-04, Vol.9 (14), p.12203-12216</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-cdc12dae7b19c8c2e8d44bff0474a24c979ce27ae2f11e6a3d9275cf4873e44b3</citedby><cites>FETCH-LOGICAL-a396t-cdc12dae7b19c8c2e8d44bff0474a24c979ce27ae2f11e6a3d9275cf4873e44b3</cites><orcidid>0000-0003-0884-6943</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.6b16556$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.6b16556$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28332829$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Chuanxu</creatorcontrib><creatorcontrib>Gao, Shan</creatorcontrib><creatorcontrib>Dagnæs-Hansen, Frederik</creatorcontrib><creatorcontrib>Jakobsen, Maria</creatorcontrib><creatorcontrib>Kjems, Jørgen</creatorcontrib><title>Impact of PEG Chain Length on the Physical Properties and Bioactivity of PEGylated Chitosan/siRNA Nanoparticles in Vitro and in Vivo</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>PEGylation of cationic polyplexes is a promising approach to enhance the stability and reduce unspecific interaction with biological components. Herein, we systematically investigate the impact of PEGylation on physical and biological properties of chitosan/siRNA polyplexes. A series of chitosan-PEG copolymers (CS-PEG2k, CS-PEG5k and CS-PEG10k) were synthesized with similar PEG mass content but with different molecular weight. PEGylation with higher molecular weight and less grafting degree resulted in smaller and more compacted nanoparticles with relatively higher surface charge. PEGylated polyplexes showed distinct mechanism of endocytosis, which was macropinocytosis and caveolae-dependent and clathrin-independent. In vitro silencing efficiency in HeLa and H1299 cells was significantly improved by PEGylation and CS-PEG5k/siRNA achieved the highest knockdown efficiency. Efficient silence of ribonucleotide reductase subunit M2 (RRM2) in HeLa cells by CS-PEG5k/siRRM2 significantly induced cell cycle arrest and inhibited cell proliferation. In addition, PEGylation significantly inhibited macrophage phagocytosis and unspecific interaction with red blood cells (RBCs). Significant extension of in vivo circulation was achieved only with high molecular weight PEG modification (CS-PEG10k), whereas all CS/siRNA and CS-PEG/siRNA nanoparticles showed similar pattern of biodistribution with major accumulation in liver and kidney. These results imply that PEGylation with higher molecular weight PEG and less grafting rate is a promising strategy to improve chitosan/siRNA nanocomplexes performance both in vitro and in vivo.</description><subject>Cell Line, Tumor</subject><subject>Chitosan</subject><subject>Humans</subject><subject>Nanoparticles</subject><subject>Polyethylene Glycols</subject><subject>RNA, Small Interfering</subject><subject>Tissue Distribution</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1LwzAYh4MoOj-uHiVHEbY1afp11OEXjDlEvZa36VsbaZuaZIPe_cON2_TmKQk8zwP5EXLOggkLOJuCtNCqSVywOIriPTJimRDjlEd8_-8uxBE5tvYjCOKQB9EhOeJpGPKUZyPy9dj2IB3VFV3e3tNZDaqjc-zeXU11R12NdFkPVklo6NLoHo1TaCl0Jb1R2ptqrdyw04cGHJY-opy20E2tel5c0wV0ugfvycabPv-mnNGbxOax1qfkoILG4tnuPCGvd7cvs4fx_On-cXY9H0OYxW4sS8l4CZgULJOp5JiWQhRVFYhEABcySzKJPAHkFWMYQ1hmPIlkJdIkRE-GJ-Ry2-2N_lyhdXmrrMSmgQ71yuYsTX2L8Ux4dLJFpdHWGqzy3qgWzJCzIP9ZPt8un--W98LFrr0qWiz_8N-pPXC1BbyYf-iV6fxX_6t9A5Agjwc</recordid><startdate>20170412</startdate><enddate>20170412</enddate><creator>Yang, Chuanxu</creator><creator>Gao, Shan</creator><creator>Dagnæs-Hansen, Frederik</creator><creator>Jakobsen, Maria</creator><creator>Kjems, Jørgen</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0884-6943</orcidid></search><sort><creationdate>20170412</creationdate><title>Impact of PEG Chain Length on the Physical Properties and Bioactivity of PEGylated Chitosan/siRNA Nanoparticles in Vitro and in Vivo</title><author>Yang, Chuanxu ; Gao, Shan ; Dagnæs-Hansen, Frederik ; Jakobsen, Maria ; Kjems, Jørgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-cdc12dae7b19c8c2e8d44bff0474a24c979ce27ae2f11e6a3d9275cf4873e44b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cell Line, Tumor</topic><topic>Chitosan</topic><topic>Humans</topic><topic>Nanoparticles</topic><topic>Polyethylene Glycols</topic><topic>RNA, Small Interfering</topic><topic>Tissue Distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Chuanxu</creatorcontrib><creatorcontrib>Gao, Shan</creatorcontrib><creatorcontrib>Dagnæs-Hansen, Frederik</creatorcontrib><creatorcontrib>Jakobsen, Maria</creatorcontrib><creatorcontrib>Kjems, Jørgen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Chuanxu</au><au>Gao, Shan</au><au>Dagnæs-Hansen, Frederik</au><au>Jakobsen, Maria</au><au>Kjems, Jørgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of PEG Chain Length on the Physical Properties and Bioactivity of PEGylated Chitosan/siRNA Nanoparticles in Vitro and in Vivo</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2017-04-12</date><risdate>2017</risdate><volume>9</volume><issue>14</issue><spage>12203</spage><epage>12216</epage><pages>12203-12216</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>PEGylation of cationic polyplexes is a promising approach to enhance the stability and reduce unspecific interaction with biological components. Herein, we systematically investigate the impact of PEGylation on physical and biological properties of chitosan/siRNA polyplexes. A series of chitosan-PEG copolymers (CS-PEG2k, CS-PEG5k and CS-PEG10k) were synthesized with similar PEG mass content but with different molecular weight. PEGylation with higher molecular weight and less grafting degree resulted in smaller and more compacted nanoparticles with relatively higher surface charge. PEGylated polyplexes showed distinct mechanism of endocytosis, which was macropinocytosis and caveolae-dependent and clathrin-independent. In vitro silencing efficiency in HeLa and H1299 cells was significantly improved by PEGylation and CS-PEG5k/siRNA achieved the highest knockdown efficiency. Efficient silence of ribonucleotide reductase subunit M2 (RRM2) in HeLa cells by CS-PEG5k/siRRM2 significantly induced cell cycle arrest and inhibited cell proliferation. In addition, PEGylation significantly inhibited macrophage phagocytosis and unspecific interaction with red blood cells (RBCs). Significant extension of in vivo circulation was achieved only with high molecular weight PEG modification (CS-PEG10k), whereas all CS/siRNA and CS-PEG/siRNA nanoparticles showed similar pattern of biodistribution with major accumulation in liver and kidney. These results imply that PEGylation with higher molecular weight PEG and less grafting rate is a promising strategy to improve chitosan/siRNA nanocomplexes performance both in vitro and in vivo.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28332829</pmid><doi>10.1021/acsami.6b16556</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0884-6943</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2017-04, Vol.9 (14), p.12203-12216 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_1880471294 |
source | ACS Publications; MEDLINE |
subjects | Cell Line, Tumor Chitosan Humans Nanoparticles Polyethylene Glycols RNA, Small Interfering Tissue Distribution |
title | Impact of PEG Chain Length on the Physical Properties and Bioactivity of PEGylated Chitosan/siRNA Nanoparticles in Vitro and in Vivo |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A29%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20PEG%20Chain%20Length%20on%20the%20Physical%20Properties%20and%20Bioactivity%20of%20PEGylated%20Chitosan/siRNA%20Nanoparticles%20in%20Vitro%20and%20in%20Vivo&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Yang,%20Chuanxu&rft.date=2017-04-12&rft.volume=9&rft.issue=14&rft.spage=12203&rft.epage=12216&rft.pages=12203-12216&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.6b16556&rft_dat=%3Cproquest_cross%3E1880471294%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880471294&rft_id=info:pmid/28332829&rfr_iscdi=true |