Impact of PEG Chain Length on the Physical Properties and Bioactivity of PEGylated Chitosan/siRNA Nanoparticles in Vitro and in Vivo

PEGylation of cationic polyplexes is a promising approach to enhance the stability and reduce unspecific interaction with biological components. Herein, we systematically investigate the impact of PEGylation on physical and biological properties of chitosan/siRNA polyplexes. A series of chitosan-PEG...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2017-04, Vol.9 (14), p.12203-12216
Hauptverfasser: Yang, Chuanxu, Gao, Shan, Dagnæs-Hansen, Frederik, Jakobsen, Maria, Kjems, Jørgen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12216
container_issue 14
container_start_page 12203
container_title ACS applied materials & interfaces
container_volume 9
creator Yang, Chuanxu
Gao, Shan
Dagnæs-Hansen, Frederik
Jakobsen, Maria
Kjems, Jørgen
description PEGylation of cationic polyplexes is a promising approach to enhance the stability and reduce unspecific interaction with biological components. Herein, we systematically investigate the impact of PEGylation on physical and biological properties of chitosan/siRNA polyplexes. A series of chitosan-PEG copolymers (CS-PEG2k, CS-PEG5k and CS-PEG10k) were synthesized with similar PEG mass content but with different molecular weight. PEGylation with higher molecular weight and less grafting degree resulted in smaller and more compacted nanoparticles with relatively higher surface charge. PEGylated polyplexes showed distinct mechanism of endocytosis, which was macropinocytosis and caveolae-dependent and clathrin-independent. In vitro silencing efficiency in HeLa and H1299 cells was significantly improved by PEGylation and CS-PEG5k/siRNA achieved the highest knockdown efficiency. Efficient silence of ribonucleotide reductase subunit M2 (RRM2) in HeLa cells by CS-PEG5k/siRRM2 significantly induced cell cycle arrest and inhibited cell proliferation. In addition, PEGylation significantly inhibited macrophage phagocytosis and unspecific interaction with red blood cells (RBCs). Significant extension of in vivo circulation was achieved only with high molecular weight PEG modification (CS-PEG10k), whereas all CS/siRNA and CS-PEG/siRNA nanoparticles showed similar pattern of biodistribution with major accumulation in liver and kidney. These results imply that PEGylation with higher molecular weight PEG and less grafting rate is a promising strategy to improve chitosan/siRNA nanocomplexes performance both in vitro and in vivo.
doi_str_mv 10.1021/acsami.6b16556
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880471294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880471294</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-cdc12dae7b19c8c2e8d44bff0474a24c979ce27ae2f11e6a3d9275cf4873e44b3</originalsourceid><addsrcrecordid>eNp1kM1LwzAYh4MoOj-uHiVHEbY1afp11OEXjDlEvZa36VsbaZuaZIPe_cON2_TmKQk8zwP5EXLOggkLOJuCtNCqSVywOIriPTJimRDjlEd8_-8uxBE5tvYjCOKQB9EhOeJpGPKUZyPy9dj2IB3VFV3e3tNZDaqjc-zeXU11R12NdFkPVklo6NLoHo1TaCl0Jb1R2ptqrdyw04cGHJY-opy20E2tel5c0wV0ugfvycabPv-mnNGbxOax1qfkoILG4tnuPCGvd7cvs4fx_On-cXY9H0OYxW4sS8l4CZgULJOp5JiWQhRVFYhEABcySzKJPAHkFWMYQ1hmPIlkJdIkRE-GJ-Ry2-2N_lyhdXmrrMSmgQ71yuYsTX2L8Ux4dLJFpdHWGqzy3qgWzJCzIP9ZPt8un--W98LFrr0qWiz_8N-pPXC1BbyYf-iV6fxX_6t9A5Agjwc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880471294</pqid></control><display><type>article</type><title>Impact of PEG Chain Length on the Physical Properties and Bioactivity of PEGylated Chitosan/siRNA Nanoparticles in Vitro and in Vivo</title><source>ACS Publications</source><source>MEDLINE</source><creator>Yang, Chuanxu ; Gao, Shan ; Dagnæs-Hansen, Frederik ; Jakobsen, Maria ; Kjems, Jørgen</creator><creatorcontrib>Yang, Chuanxu ; Gao, Shan ; Dagnæs-Hansen, Frederik ; Jakobsen, Maria ; Kjems, Jørgen</creatorcontrib><description>PEGylation of cationic polyplexes is a promising approach to enhance the stability and reduce unspecific interaction with biological components. Herein, we systematically investigate the impact of PEGylation on physical and biological properties of chitosan/siRNA polyplexes. A series of chitosan-PEG copolymers (CS-PEG2k, CS-PEG5k and CS-PEG10k) were synthesized with similar PEG mass content but with different molecular weight. PEGylation with higher molecular weight and less grafting degree resulted in smaller and more compacted nanoparticles with relatively higher surface charge. PEGylated polyplexes showed distinct mechanism of endocytosis, which was macropinocytosis and caveolae-dependent and clathrin-independent. In vitro silencing efficiency in HeLa and H1299 cells was significantly improved by PEGylation and CS-PEG5k/siRNA achieved the highest knockdown efficiency. Efficient silence of ribonucleotide reductase subunit M2 (RRM2) in HeLa cells by CS-PEG5k/siRRM2 significantly induced cell cycle arrest and inhibited cell proliferation. In addition, PEGylation significantly inhibited macrophage phagocytosis and unspecific interaction with red blood cells (RBCs). Significant extension of in vivo circulation was achieved only with high molecular weight PEG modification (CS-PEG10k), whereas all CS/siRNA and CS-PEG/siRNA nanoparticles showed similar pattern of biodistribution with major accumulation in liver and kidney. These results imply that PEGylation with higher molecular weight PEG and less grafting rate is a promising strategy to improve chitosan/siRNA nanocomplexes performance both in vitro and in vivo.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.6b16556</identifier><identifier>PMID: 28332829</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Cell Line, Tumor ; Chitosan ; Humans ; Nanoparticles ; Polyethylene Glycols ; RNA, Small Interfering ; Tissue Distribution</subject><ispartof>ACS applied materials &amp; interfaces, 2017-04, Vol.9 (14), p.12203-12216</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-cdc12dae7b19c8c2e8d44bff0474a24c979ce27ae2f11e6a3d9275cf4873e44b3</citedby><cites>FETCH-LOGICAL-a396t-cdc12dae7b19c8c2e8d44bff0474a24c979ce27ae2f11e6a3d9275cf4873e44b3</cites><orcidid>0000-0003-0884-6943</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.6b16556$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.6b16556$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28332829$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Chuanxu</creatorcontrib><creatorcontrib>Gao, Shan</creatorcontrib><creatorcontrib>Dagnæs-Hansen, Frederik</creatorcontrib><creatorcontrib>Jakobsen, Maria</creatorcontrib><creatorcontrib>Kjems, Jørgen</creatorcontrib><title>Impact of PEG Chain Length on the Physical Properties and Bioactivity of PEGylated Chitosan/siRNA Nanoparticles in Vitro and in Vivo</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>PEGylation of cationic polyplexes is a promising approach to enhance the stability and reduce unspecific interaction with biological components. Herein, we systematically investigate the impact of PEGylation on physical and biological properties of chitosan/siRNA polyplexes. A series of chitosan-PEG copolymers (CS-PEG2k, CS-PEG5k and CS-PEG10k) were synthesized with similar PEG mass content but with different molecular weight. PEGylation with higher molecular weight and less grafting degree resulted in smaller and more compacted nanoparticles with relatively higher surface charge. PEGylated polyplexes showed distinct mechanism of endocytosis, which was macropinocytosis and caveolae-dependent and clathrin-independent. In vitro silencing efficiency in HeLa and H1299 cells was significantly improved by PEGylation and CS-PEG5k/siRNA achieved the highest knockdown efficiency. Efficient silence of ribonucleotide reductase subunit M2 (RRM2) in HeLa cells by CS-PEG5k/siRRM2 significantly induced cell cycle arrest and inhibited cell proliferation. In addition, PEGylation significantly inhibited macrophage phagocytosis and unspecific interaction with red blood cells (RBCs). Significant extension of in vivo circulation was achieved only with high molecular weight PEG modification (CS-PEG10k), whereas all CS/siRNA and CS-PEG/siRNA nanoparticles showed similar pattern of biodistribution with major accumulation in liver and kidney. These results imply that PEGylation with higher molecular weight PEG and less grafting rate is a promising strategy to improve chitosan/siRNA nanocomplexes performance both in vitro and in vivo.</description><subject>Cell Line, Tumor</subject><subject>Chitosan</subject><subject>Humans</subject><subject>Nanoparticles</subject><subject>Polyethylene Glycols</subject><subject>RNA, Small Interfering</subject><subject>Tissue Distribution</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1LwzAYh4MoOj-uHiVHEbY1afp11OEXjDlEvZa36VsbaZuaZIPe_cON2_TmKQk8zwP5EXLOggkLOJuCtNCqSVywOIriPTJimRDjlEd8_-8uxBE5tvYjCOKQB9EhOeJpGPKUZyPy9dj2IB3VFV3e3tNZDaqjc-zeXU11R12NdFkPVklo6NLoHo1TaCl0Jb1R2ptqrdyw04cGHJY-opy20E2tel5c0wV0ugfvycabPv-mnNGbxOax1qfkoILG4tnuPCGvd7cvs4fx_On-cXY9H0OYxW4sS8l4CZgULJOp5JiWQhRVFYhEABcySzKJPAHkFWMYQ1hmPIlkJdIkRE-GJ-Ry2-2N_lyhdXmrrMSmgQ71yuYsTX2L8Ux4dLJFpdHWGqzy3qgWzJCzIP9ZPt8un--W98LFrr0qWiz_8N-pPXC1BbyYf-iV6fxX_6t9A5Agjwc</recordid><startdate>20170412</startdate><enddate>20170412</enddate><creator>Yang, Chuanxu</creator><creator>Gao, Shan</creator><creator>Dagnæs-Hansen, Frederik</creator><creator>Jakobsen, Maria</creator><creator>Kjems, Jørgen</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0884-6943</orcidid></search><sort><creationdate>20170412</creationdate><title>Impact of PEG Chain Length on the Physical Properties and Bioactivity of PEGylated Chitosan/siRNA Nanoparticles in Vitro and in Vivo</title><author>Yang, Chuanxu ; Gao, Shan ; Dagnæs-Hansen, Frederik ; Jakobsen, Maria ; Kjems, Jørgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-cdc12dae7b19c8c2e8d44bff0474a24c979ce27ae2f11e6a3d9275cf4873e44b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cell Line, Tumor</topic><topic>Chitosan</topic><topic>Humans</topic><topic>Nanoparticles</topic><topic>Polyethylene Glycols</topic><topic>RNA, Small Interfering</topic><topic>Tissue Distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Chuanxu</creatorcontrib><creatorcontrib>Gao, Shan</creatorcontrib><creatorcontrib>Dagnæs-Hansen, Frederik</creatorcontrib><creatorcontrib>Jakobsen, Maria</creatorcontrib><creatorcontrib>Kjems, Jørgen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Chuanxu</au><au>Gao, Shan</au><au>Dagnæs-Hansen, Frederik</au><au>Jakobsen, Maria</au><au>Kjems, Jørgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of PEG Chain Length on the Physical Properties and Bioactivity of PEGylated Chitosan/siRNA Nanoparticles in Vitro and in Vivo</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2017-04-12</date><risdate>2017</risdate><volume>9</volume><issue>14</issue><spage>12203</spage><epage>12216</epage><pages>12203-12216</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>PEGylation of cationic polyplexes is a promising approach to enhance the stability and reduce unspecific interaction with biological components. Herein, we systematically investigate the impact of PEGylation on physical and biological properties of chitosan/siRNA polyplexes. A series of chitosan-PEG copolymers (CS-PEG2k, CS-PEG5k and CS-PEG10k) were synthesized with similar PEG mass content but with different molecular weight. PEGylation with higher molecular weight and less grafting degree resulted in smaller and more compacted nanoparticles with relatively higher surface charge. PEGylated polyplexes showed distinct mechanism of endocytosis, which was macropinocytosis and caveolae-dependent and clathrin-independent. In vitro silencing efficiency in HeLa and H1299 cells was significantly improved by PEGylation and CS-PEG5k/siRNA achieved the highest knockdown efficiency. Efficient silence of ribonucleotide reductase subunit M2 (RRM2) in HeLa cells by CS-PEG5k/siRRM2 significantly induced cell cycle arrest and inhibited cell proliferation. In addition, PEGylation significantly inhibited macrophage phagocytosis and unspecific interaction with red blood cells (RBCs). Significant extension of in vivo circulation was achieved only with high molecular weight PEG modification (CS-PEG10k), whereas all CS/siRNA and CS-PEG/siRNA nanoparticles showed similar pattern of biodistribution with major accumulation in liver and kidney. These results imply that PEGylation with higher molecular weight PEG and less grafting rate is a promising strategy to improve chitosan/siRNA nanocomplexes performance both in vitro and in vivo.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28332829</pmid><doi>10.1021/acsami.6b16556</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0884-6943</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2017-04, Vol.9 (14), p.12203-12216
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1880471294
source ACS Publications; MEDLINE
subjects Cell Line, Tumor
Chitosan
Humans
Nanoparticles
Polyethylene Glycols
RNA, Small Interfering
Tissue Distribution
title Impact of PEG Chain Length on the Physical Properties and Bioactivity of PEGylated Chitosan/siRNA Nanoparticles in Vitro and in Vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A29%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20PEG%20Chain%20Length%20on%20the%20Physical%20Properties%20and%20Bioactivity%20of%20PEGylated%20Chitosan/siRNA%20Nanoparticles%20in%20Vitro%20and%20in%20Vivo&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Yang,%20Chuanxu&rft.date=2017-04-12&rft.volume=9&rft.issue=14&rft.spage=12203&rft.epage=12216&rft.pages=12203-12216&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.6b16556&rft_dat=%3Cproquest_cross%3E1880471294%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880471294&rft_id=info:pmid/28332829&rfr_iscdi=true