Biomimetic scaffolds with three-dimensional undulated microtopographies
Abstract Many human and animal tissues naturally possess three-dimensional (3D) micro-scale geometries enabling certain physiological functions. Absence of these microgeometries in engineered tissues may undermine the effectiveness of corresponding tissue repair and regeneration. This paper introduc...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2017-06, Vol.128, p.109-120 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 120 |
---|---|
container_issue | |
container_start_page | 109 |
container_title | Biomaterials |
container_volume | 128 |
creator | Yu, Jonelle Z Korkmaz, Emrullah LeDuc, Philip R Ozdoganlar, O. Burak |
description | Abstract Many human and animal tissues naturally possess three-dimensional (3D) micro-scale geometries enabling certain physiological functions. Absence of these microgeometries in engineered tissues may undermine the effectiveness of corresponding tissue repair and regeneration. This paper introduces a novel approach to create tissue scaffolds with biomimetic 3D undulated microtopographies. The mechanical micromilling technology is used for precise and reproducible fabrication of poly(methyl methacrylate) (PMMA) master molds with 3D undulated microtopographies. Poly(dimethylsiloxane) (PDMS) production molds are then created using the master molds through elastomer molding. Next, gelatin-chondroitin-6-sulfate-hyaluronic acid (Gel-C6S-HA) is filled into the PDMS molds in its gel form, lyophilized to obtain solid porous scaffolds, and covalently cross-linked to control biodegradability. The utility of the final porous scaffolds with undulated microtopographies mimicking dermal papillae of skin is demonstrated in vitro by culturing neonatal human fibroblasts (NHFs) on the scaffold surfaces for up to 7 days. The assessment of the mold and scaffold geometries demonstrates high accuracy and reproducibility of the PMMA mold fabrication, as well as well-controlled undulated microtopographies and porous microstructures of the final scaffolds. The analysis of cell responses to the undulated microtopographies shows the biocompatibility and effectiveness of the final scaffolds, as well as unique cellular response to these biomimetic topographies at the macroscopic level. |
doi_str_mv | 10.1016/j.biomaterials.2017.02.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880080860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0142961217300881</els_id><sourcerecordid>1880080860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-a8915bef5823a5604a6dd0607691ae4c6e5885c04412e6ea5c2fd4315678c8d33</originalsourceid><addsrcrecordid>eNqNUUtP3DAQtipQWWj_QhVx4pJ0bMeOtwckoOUhIXGgPVtee9L1NokXOyni39fRUoQ4cRp5_D1mviHkmEJFgcqvm2rlQ29GjN50qWJAmwpYBbT-QBZUNaoUSxB7ZJE7rFxKyg7IYUobyG-o2UdywBRnQiq-IFfnWcr3OHpbJGvaNnQuFY9-XBfjOiKWLn8OyYfBdMU0uKnLvq7ovY1hDNvwO5rt2mP6RPbbPAx-fq5H5Nflj58X1-Xt3dXNxdltaWsuxtKoJRUrbIVi3AgJtZHOgYRGLqnB2koUSgkLdU0ZSjTCstbVnArZKKsc50fkZKe7jeFhwjTq3ieLXWcGDFPSVCkABUpChn7bQfOoKUVs9Tb63sQnTUHPQeqNfh2knoPUwHSOKZO_PPtMqx7dC_V_chnwfQfAvO1fj1En63Gw6HxEO2oX_Pt8Tt_I2M4P3pruDz5h2oQpDjOH6pQJ-n4-6XxR2vC8p6L8H2YRoLE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880080860</pqid></control><display><type>article</type><title>Biomimetic scaffolds with three-dimensional undulated microtopographies</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Yu, Jonelle Z ; Korkmaz, Emrullah ; LeDuc, Philip R ; Ozdoganlar, O. Burak</creator><creatorcontrib>Yu, Jonelle Z ; Korkmaz, Emrullah ; LeDuc, Philip R ; Ozdoganlar, O. Burak</creatorcontrib><description>Abstract Many human and animal tissues naturally possess three-dimensional (3D) micro-scale geometries enabling certain physiological functions. Absence of these microgeometries in engineered tissues may undermine the effectiveness of corresponding tissue repair and regeneration. This paper introduces a novel approach to create tissue scaffolds with biomimetic 3D undulated microtopographies. The mechanical micromilling technology is used for precise and reproducible fabrication of poly(methyl methacrylate) (PMMA) master molds with 3D undulated microtopographies. Poly(dimethylsiloxane) (PDMS) production molds are then created using the master molds through elastomer molding. Next, gelatin-chondroitin-6-sulfate-hyaluronic acid (Gel-C6S-HA) is filled into the PDMS molds in its gel form, lyophilized to obtain solid porous scaffolds, and covalently cross-linked to control biodegradability. The utility of the final porous scaffolds with undulated microtopographies mimicking dermal papillae of skin is demonstrated in vitro by culturing neonatal human fibroblasts (NHFs) on the scaffold surfaces for up to 7 days. The assessment of the mold and scaffold geometries demonstrates high accuracy and reproducibility of the PMMA mold fabrication, as well as well-controlled undulated microtopographies and porous microstructures of the final scaffolds. The analysis of cell responses to the undulated microtopographies shows the biocompatibility and effectiveness of the final scaffolds, as well as unique cellular response to these biomimetic topographies at the macroscopic level.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2017.02.014</identifier><identifier>PMID: 28325683</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Biomimetic Materials - chemistry ; Biomimetic Materials - pharmacology ; Cells, Cultured ; Dentistry ; Dermal papillae ; Dimethylpolysiloxanes - chemistry ; Fibroblasts - cytology ; Fibroblasts - drug effects ; Humans ; Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry ; Hydrogel, Polyethylene Glycol Dimethacrylate - pharmacology ; Infant, Newborn ; Micromilling ; Polymethyl Methacrylate - chemistry ; Porous scaffolds ; Tissue engineering ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry ; Undulated microtopographies</subject><ispartof>Biomaterials, 2017-06, Vol.128, p.109-120</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-a8915bef5823a5604a6dd0607691ae4c6e5885c04412e6ea5c2fd4315678c8d33</citedby><cites>FETCH-LOGICAL-c435t-a8915bef5823a5604a6dd0607691ae4c6e5885c04412e6ea5c2fd4315678c8d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961217300881$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28325683$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Jonelle Z</creatorcontrib><creatorcontrib>Korkmaz, Emrullah</creatorcontrib><creatorcontrib>LeDuc, Philip R</creatorcontrib><creatorcontrib>Ozdoganlar, O. Burak</creatorcontrib><title>Biomimetic scaffolds with three-dimensional undulated microtopographies</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Many human and animal tissues naturally possess three-dimensional (3D) micro-scale geometries enabling certain physiological functions. Absence of these microgeometries in engineered tissues may undermine the effectiveness of corresponding tissue repair and regeneration. This paper introduces a novel approach to create tissue scaffolds with biomimetic 3D undulated microtopographies. The mechanical micromilling technology is used for precise and reproducible fabrication of poly(methyl methacrylate) (PMMA) master molds with 3D undulated microtopographies. Poly(dimethylsiloxane) (PDMS) production molds are then created using the master molds through elastomer molding. Next, gelatin-chondroitin-6-sulfate-hyaluronic acid (Gel-C6S-HA) is filled into the PDMS molds in its gel form, lyophilized to obtain solid porous scaffolds, and covalently cross-linked to control biodegradability. The utility of the final porous scaffolds with undulated microtopographies mimicking dermal papillae of skin is demonstrated in vitro by culturing neonatal human fibroblasts (NHFs) on the scaffold surfaces for up to 7 days. The assessment of the mold and scaffold geometries demonstrates high accuracy and reproducibility of the PMMA mold fabrication, as well as well-controlled undulated microtopographies and porous microstructures of the final scaffolds. The analysis of cell responses to the undulated microtopographies shows the biocompatibility and effectiveness of the final scaffolds, as well as unique cellular response to these biomimetic topographies at the macroscopic level.</description><subject>Advanced Basic Science</subject><subject>Biomimetic Materials - chemistry</subject><subject>Biomimetic Materials - pharmacology</subject><subject>Cells, Cultured</subject><subject>Dentistry</subject><subject>Dermal papillae</subject><subject>Dimethylpolysiloxanes - chemistry</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - drug effects</subject><subject>Humans</subject><subject>Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry</subject><subject>Hydrogel, Polyethylene Glycol Dimethacrylate - pharmacology</subject><subject>Infant, Newborn</subject><subject>Micromilling</subject><subject>Polymethyl Methacrylate - chemistry</subject><subject>Porous scaffolds</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Undulated microtopographies</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUUtP3DAQtipQWWj_QhVx4pJ0bMeOtwckoOUhIXGgPVtee9L1NokXOyni39fRUoQ4cRp5_D1mviHkmEJFgcqvm2rlQ29GjN50qWJAmwpYBbT-QBZUNaoUSxB7ZJE7rFxKyg7IYUobyG-o2UdywBRnQiq-IFfnWcr3OHpbJGvaNnQuFY9-XBfjOiKWLn8OyYfBdMU0uKnLvq7ovY1hDNvwO5rt2mP6RPbbPAx-fq5H5Nflj58X1-Xt3dXNxdltaWsuxtKoJRUrbIVi3AgJtZHOgYRGLqnB2koUSgkLdU0ZSjTCstbVnArZKKsc50fkZKe7jeFhwjTq3ieLXWcGDFPSVCkABUpChn7bQfOoKUVs9Tb63sQnTUHPQeqNfh2knoPUwHSOKZO_PPtMqx7dC_V_chnwfQfAvO1fj1En63Gw6HxEO2oX_Pt8Tt_I2M4P3pruDz5h2oQpDjOH6pQJ-n4-6XxR2vC8p6L8H2YRoLE</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Yu, Jonelle Z</creator><creator>Korkmaz, Emrullah</creator><creator>LeDuc, Philip R</creator><creator>Ozdoganlar, O. Burak</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170601</creationdate><title>Biomimetic scaffolds with three-dimensional undulated microtopographies</title><author>Yu, Jonelle Z ; Korkmaz, Emrullah ; LeDuc, Philip R ; Ozdoganlar, O. Burak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-a8915bef5823a5604a6dd0607691ae4c6e5885c04412e6ea5c2fd4315678c8d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Advanced Basic Science</topic><topic>Biomimetic Materials - chemistry</topic><topic>Biomimetic Materials - pharmacology</topic><topic>Cells, Cultured</topic><topic>Dentistry</topic><topic>Dermal papillae</topic><topic>Dimethylpolysiloxanes - chemistry</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - drug effects</topic><topic>Humans</topic><topic>Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry</topic><topic>Hydrogel, Polyethylene Glycol Dimethacrylate - pharmacology</topic><topic>Infant, Newborn</topic><topic>Micromilling</topic><topic>Polymethyl Methacrylate - chemistry</topic><topic>Porous scaffolds</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Undulated microtopographies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Jonelle Z</creatorcontrib><creatorcontrib>Korkmaz, Emrullah</creatorcontrib><creatorcontrib>LeDuc, Philip R</creatorcontrib><creatorcontrib>Ozdoganlar, O. Burak</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Jonelle Z</au><au>Korkmaz, Emrullah</au><au>LeDuc, Philip R</au><au>Ozdoganlar, O. Burak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomimetic scaffolds with three-dimensional undulated microtopographies</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>128</volume><spage>109</spage><epage>120</epage><pages>109-120</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Many human and animal tissues naturally possess three-dimensional (3D) micro-scale geometries enabling certain physiological functions. Absence of these microgeometries in engineered tissues may undermine the effectiveness of corresponding tissue repair and regeneration. This paper introduces a novel approach to create tissue scaffolds with biomimetic 3D undulated microtopographies. The mechanical micromilling technology is used for precise and reproducible fabrication of poly(methyl methacrylate) (PMMA) master molds with 3D undulated microtopographies. Poly(dimethylsiloxane) (PDMS) production molds are then created using the master molds through elastomer molding. Next, gelatin-chondroitin-6-sulfate-hyaluronic acid (Gel-C6S-HA) is filled into the PDMS molds in its gel form, lyophilized to obtain solid porous scaffolds, and covalently cross-linked to control biodegradability. The utility of the final porous scaffolds with undulated microtopographies mimicking dermal papillae of skin is demonstrated in vitro by culturing neonatal human fibroblasts (NHFs) on the scaffold surfaces for up to 7 days. The assessment of the mold and scaffold geometries demonstrates high accuracy and reproducibility of the PMMA mold fabrication, as well as well-controlled undulated microtopographies and porous microstructures of the final scaffolds. The analysis of cell responses to the undulated microtopographies shows the biocompatibility and effectiveness of the final scaffolds, as well as unique cellular response to these biomimetic topographies at the macroscopic level.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>28325683</pmid><doi>10.1016/j.biomaterials.2017.02.014</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2017-06, Vol.128, p.109-120 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_1880080860 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Advanced Basic Science Biomimetic Materials - chemistry Biomimetic Materials - pharmacology Cells, Cultured Dentistry Dermal papillae Dimethylpolysiloxanes - chemistry Fibroblasts - cytology Fibroblasts - drug effects Humans Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry Hydrogel, Polyethylene Glycol Dimethacrylate - pharmacology Infant, Newborn Micromilling Polymethyl Methacrylate - chemistry Porous scaffolds Tissue engineering Tissue Engineering - methods Tissue Scaffolds - chemistry Undulated microtopographies |
title | Biomimetic scaffolds with three-dimensional undulated microtopographies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A09%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomimetic%20scaffolds%20with%20three-dimensional%20undulated%20microtopographies&rft.jtitle=Biomaterials&rft.au=Yu,%20Jonelle%20Z&rft.date=2017-06-01&rft.volume=128&rft.spage=109&rft.epage=120&rft.pages=109-120&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2017.02.014&rft_dat=%3Cproquest_cross%3E1880080860%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880080860&rft_id=info:pmid/28325683&rft_els_id=1_s2_0_S0142961217300881&rfr_iscdi=true |