Biomimetic scaffolds with three-dimensional undulated microtopographies

Abstract Many human and animal tissues naturally possess three-dimensional (3D) micro-scale geometries enabling certain physiological functions. Absence of these microgeometries in engineered tissues may undermine the effectiveness of corresponding tissue repair and regeneration. This paper introduc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2017-06, Vol.128, p.109-120
Hauptverfasser: Yu, Jonelle Z, Korkmaz, Emrullah, LeDuc, Philip R, Ozdoganlar, O. Burak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 120
container_issue
container_start_page 109
container_title Biomaterials
container_volume 128
creator Yu, Jonelle Z
Korkmaz, Emrullah
LeDuc, Philip R
Ozdoganlar, O. Burak
description Abstract Many human and animal tissues naturally possess three-dimensional (3D) micro-scale geometries enabling certain physiological functions. Absence of these microgeometries in engineered tissues may undermine the effectiveness of corresponding tissue repair and regeneration. This paper introduces a novel approach to create tissue scaffolds with biomimetic 3D undulated microtopographies. The mechanical micromilling technology is used for precise and reproducible fabrication of poly(methyl methacrylate) (PMMA) master molds with 3D undulated microtopographies. Poly(dimethylsiloxane) (PDMS) production molds are then created using the master molds through elastomer molding. Next, gelatin-chondroitin-6-sulfate-hyaluronic acid (Gel-C6S-HA) is filled into the PDMS molds in its gel form, lyophilized to obtain solid porous scaffolds, and covalently cross-linked to control biodegradability. The utility of the final porous scaffolds with undulated microtopographies mimicking dermal papillae of skin is demonstrated in vitro by culturing neonatal human fibroblasts (NHFs) on the scaffold surfaces for up to 7 days. The assessment of the mold and scaffold geometries demonstrates high accuracy and reproducibility of the PMMA mold fabrication, as well as well-controlled undulated microtopographies and porous microstructures of the final scaffolds. The analysis of cell responses to the undulated microtopographies shows the biocompatibility and effectiveness of the final scaffolds, as well as unique cellular response to these biomimetic topographies at the macroscopic level.
doi_str_mv 10.1016/j.biomaterials.2017.02.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880080860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0142961217300881</els_id><sourcerecordid>1880080860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-a8915bef5823a5604a6dd0607691ae4c6e5885c04412e6ea5c2fd4315678c8d33</originalsourceid><addsrcrecordid>eNqNUUtP3DAQtipQWWj_QhVx4pJ0bMeOtwckoOUhIXGgPVtee9L1NokXOyni39fRUoQ4cRp5_D1mviHkmEJFgcqvm2rlQ29GjN50qWJAmwpYBbT-QBZUNaoUSxB7ZJE7rFxKyg7IYUobyG-o2UdywBRnQiq-IFfnWcr3OHpbJGvaNnQuFY9-XBfjOiKWLn8OyYfBdMU0uKnLvq7ovY1hDNvwO5rt2mP6RPbbPAx-fq5H5Nflj58X1-Xt3dXNxdltaWsuxtKoJRUrbIVi3AgJtZHOgYRGLqnB2koUSgkLdU0ZSjTCstbVnArZKKsc50fkZKe7jeFhwjTq3ieLXWcGDFPSVCkABUpChn7bQfOoKUVs9Tb63sQnTUHPQeqNfh2knoPUwHSOKZO_PPtMqx7dC_V_chnwfQfAvO1fj1En63Gw6HxEO2oX_Pt8Tt_I2M4P3pruDz5h2oQpDjOH6pQJ-n4-6XxR2vC8p6L8H2YRoLE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880080860</pqid></control><display><type>article</type><title>Biomimetic scaffolds with three-dimensional undulated microtopographies</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Yu, Jonelle Z ; Korkmaz, Emrullah ; LeDuc, Philip R ; Ozdoganlar, O. Burak</creator><creatorcontrib>Yu, Jonelle Z ; Korkmaz, Emrullah ; LeDuc, Philip R ; Ozdoganlar, O. Burak</creatorcontrib><description>Abstract Many human and animal tissues naturally possess three-dimensional (3D) micro-scale geometries enabling certain physiological functions. Absence of these microgeometries in engineered tissues may undermine the effectiveness of corresponding tissue repair and regeneration. This paper introduces a novel approach to create tissue scaffolds with biomimetic 3D undulated microtopographies. The mechanical micromilling technology is used for precise and reproducible fabrication of poly(methyl methacrylate) (PMMA) master molds with 3D undulated microtopographies. Poly(dimethylsiloxane) (PDMS) production molds are then created using the master molds through elastomer molding. Next, gelatin-chondroitin-6-sulfate-hyaluronic acid (Gel-C6S-HA) is filled into the PDMS molds in its gel form, lyophilized to obtain solid porous scaffolds, and covalently cross-linked to control biodegradability. The utility of the final porous scaffolds with undulated microtopographies mimicking dermal papillae of skin is demonstrated in vitro by culturing neonatal human fibroblasts (NHFs) on the scaffold surfaces for up to 7 days. The assessment of the mold and scaffold geometries demonstrates high accuracy and reproducibility of the PMMA mold fabrication, as well as well-controlled undulated microtopographies and porous microstructures of the final scaffolds. The analysis of cell responses to the undulated microtopographies shows the biocompatibility and effectiveness of the final scaffolds, as well as unique cellular response to these biomimetic topographies at the macroscopic level.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2017.02.014</identifier><identifier>PMID: 28325683</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Biomimetic Materials - chemistry ; Biomimetic Materials - pharmacology ; Cells, Cultured ; Dentistry ; Dermal papillae ; Dimethylpolysiloxanes - chemistry ; Fibroblasts - cytology ; Fibroblasts - drug effects ; Humans ; Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry ; Hydrogel, Polyethylene Glycol Dimethacrylate - pharmacology ; Infant, Newborn ; Micromilling ; Polymethyl Methacrylate - chemistry ; Porous scaffolds ; Tissue engineering ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry ; Undulated microtopographies</subject><ispartof>Biomaterials, 2017-06, Vol.128, p.109-120</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-a8915bef5823a5604a6dd0607691ae4c6e5885c04412e6ea5c2fd4315678c8d33</citedby><cites>FETCH-LOGICAL-c435t-a8915bef5823a5604a6dd0607691ae4c6e5885c04412e6ea5c2fd4315678c8d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961217300881$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28325683$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Jonelle Z</creatorcontrib><creatorcontrib>Korkmaz, Emrullah</creatorcontrib><creatorcontrib>LeDuc, Philip R</creatorcontrib><creatorcontrib>Ozdoganlar, O. Burak</creatorcontrib><title>Biomimetic scaffolds with three-dimensional undulated microtopographies</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Many human and animal tissues naturally possess three-dimensional (3D) micro-scale geometries enabling certain physiological functions. Absence of these microgeometries in engineered tissues may undermine the effectiveness of corresponding tissue repair and regeneration. This paper introduces a novel approach to create tissue scaffolds with biomimetic 3D undulated microtopographies. The mechanical micromilling technology is used for precise and reproducible fabrication of poly(methyl methacrylate) (PMMA) master molds with 3D undulated microtopographies. Poly(dimethylsiloxane) (PDMS) production molds are then created using the master molds through elastomer molding. Next, gelatin-chondroitin-6-sulfate-hyaluronic acid (Gel-C6S-HA) is filled into the PDMS molds in its gel form, lyophilized to obtain solid porous scaffolds, and covalently cross-linked to control biodegradability. The utility of the final porous scaffolds with undulated microtopographies mimicking dermal papillae of skin is demonstrated in vitro by culturing neonatal human fibroblasts (NHFs) on the scaffold surfaces for up to 7 days. The assessment of the mold and scaffold geometries demonstrates high accuracy and reproducibility of the PMMA mold fabrication, as well as well-controlled undulated microtopographies and porous microstructures of the final scaffolds. The analysis of cell responses to the undulated microtopographies shows the biocompatibility and effectiveness of the final scaffolds, as well as unique cellular response to these biomimetic topographies at the macroscopic level.</description><subject>Advanced Basic Science</subject><subject>Biomimetic Materials - chemistry</subject><subject>Biomimetic Materials - pharmacology</subject><subject>Cells, Cultured</subject><subject>Dentistry</subject><subject>Dermal papillae</subject><subject>Dimethylpolysiloxanes - chemistry</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - drug effects</subject><subject>Humans</subject><subject>Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry</subject><subject>Hydrogel, Polyethylene Glycol Dimethacrylate - pharmacology</subject><subject>Infant, Newborn</subject><subject>Micromilling</subject><subject>Polymethyl Methacrylate - chemistry</subject><subject>Porous scaffolds</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Undulated microtopographies</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUUtP3DAQtipQWWj_QhVx4pJ0bMeOtwckoOUhIXGgPVtee9L1NokXOyni39fRUoQ4cRp5_D1mviHkmEJFgcqvm2rlQ29GjN50qWJAmwpYBbT-QBZUNaoUSxB7ZJE7rFxKyg7IYUobyG-o2UdywBRnQiq-IFfnWcr3OHpbJGvaNnQuFY9-XBfjOiKWLn8OyYfBdMU0uKnLvq7ovY1hDNvwO5rt2mP6RPbbPAx-fq5H5Nflj58X1-Xt3dXNxdltaWsuxtKoJRUrbIVi3AgJtZHOgYRGLqnB2koUSgkLdU0ZSjTCstbVnArZKKsc50fkZKe7jeFhwjTq3ieLXWcGDFPSVCkABUpChn7bQfOoKUVs9Tb63sQnTUHPQeqNfh2knoPUwHSOKZO_PPtMqx7dC_V_chnwfQfAvO1fj1En63Gw6HxEO2oX_Pt8Tt_I2M4P3pruDz5h2oQpDjOH6pQJ-n4-6XxR2vC8p6L8H2YRoLE</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Yu, Jonelle Z</creator><creator>Korkmaz, Emrullah</creator><creator>LeDuc, Philip R</creator><creator>Ozdoganlar, O. Burak</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170601</creationdate><title>Biomimetic scaffolds with three-dimensional undulated microtopographies</title><author>Yu, Jonelle Z ; Korkmaz, Emrullah ; LeDuc, Philip R ; Ozdoganlar, O. Burak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-a8915bef5823a5604a6dd0607691ae4c6e5885c04412e6ea5c2fd4315678c8d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Advanced Basic Science</topic><topic>Biomimetic Materials - chemistry</topic><topic>Biomimetic Materials - pharmacology</topic><topic>Cells, Cultured</topic><topic>Dentistry</topic><topic>Dermal papillae</topic><topic>Dimethylpolysiloxanes - chemistry</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - drug effects</topic><topic>Humans</topic><topic>Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry</topic><topic>Hydrogel, Polyethylene Glycol Dimethacrylate - pharmacology</topic><topic>Infant, Newborn</topic><topic>Micromilling</topic><topic>Polymethyl Methacrylate - chemistry</topic><topic>Porous scaffolds</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Undulated microtopographies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Jonelle Z</creatorcontrib><creatorcontrib>Korkmaz, Emrullah</creatorcontrib><creatorcontrib>LeDuc, Philip R</creatorcontrib><creatorcontrib>Ozdoganlar, O. Burak</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Jonelle Z</au><au>Korkmaz, Emrullah</au><au>LeDuc, Philip R</au><au>Ozdoganlar, O. Burak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomimetic scaffolds with three-dimensional undulated microtopographies</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>128</volume><spage>109</spage><epage>120</epage><pages>109-120</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Many human and animal tissues naturally possess three-dimensional (3D) micro-scale geometries enabling certain physiological functions. Absence of these microgeometries in engineered tissues may undermine the effectiveness of corresponding tissue repair and regeneration. This paper introduces a novel approach to create tissue scaffolds with biomimetic 3D undulated microtopographies. The mechanical micromilling technology is used for precise and reproducible fabrication of poly(methyl methacrylate) (PMMA) master molds with 3D undulated microtopographies. Poly(dimethylsiloxane) (PDMS) production molds are then created using the master molds through elastomer molding. Next, gelatin-chondroitin-6-sulfate-hyaluronic acid (Gel-C6S-HA) is filled into the PDMS molds in its gel form, lyophilized to obtain solid porous scaffolds, and covalently cross-linked to control biodegradability. The utility of the final porous scaffolds with undulated microtopographies mimicking dermal papillae of skin is demonstrated in vitro by culturing neonatal human fibroblasts (NHFs) on the scaffold surfaces for up to 7 days. The assessment of the mold and scaffold geometries demonstrates high accuracy and reproducibility of the PMMA mold fabrication, as well as well-controlled undulated microtopographies and porous microstructures of the final scaffolds. The analysis of cell responses to the undulated microtopographies shows the biocompatibility and effectiveness of the final scaffolds, as well as unique cellular response to these biomimetic topographies at the macroscopic level.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>28325683</pmid><doi>10.1016/j.biomaterials.2017.02.014</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2017-06, Vol.128, p.109-120
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_1880080860
source MEDLINE; Elsevier ScienceDirect Journals
subjects Advanced Basic Science
Biomimetic Materials - chemistry
Biomimetic Materials - pharmacology
Cells, Cultured
Dentistry
Dermal papillae
Dimethylpolysiloxanes - chemistry
Fibroblasts - cytology
Fibroblasts - drug effects
Humans
Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry
Hydrogel, Polyethylene Glycol Dimethacrylate - pharmacology
Infant, Newborn
Micromilling
Polymethyl Methacrylate - chemistry
Porous scaffolds
Tissue engineering
Tissue Engineering - methods
Tissue Scaffolds - chemistry
Undulated microtopographies
title Biomimetic scaffolds with three-dimensional undulated microtopographies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A09%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomimetic%20scaffolds%20with%20three-dimensional%20undulated%20microtopographies&rft.jtitle=Biomaterials&rft.au=Yu,%20Jonelle%20Z&rft.date=2017-06-01&rft.volume=128&rft.spage=109&rft.epage=120&rft.pages=109-120&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2017.02.014&rft_dat=%3Cproquest_cross%3E1880080860%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880080860&rft_id=info:pmid/28325683&rft_els_id=1_s2_0_S0142961217300881&rfr_iscdi=true