Engineering specific chemical modification sites into a collagen‐like protein from Streptococcus pyogenes
Recombinant bacterial collagens provide a new opportunity for safe biomedical materials. They are readily expressed in Escherichia coli in good yield and can be readily purified by simple approaches. However, recombinant proteins are limited in that direct secondary modification during expression is...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part A 2017-03, Vol.105 (3), p.806-813 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 813 |
---|---|
container_issue | 3 |
container_start_page | 806 |
container_title | Journal of biomedical materials research. Part A |
container_volume | 105 |
creator | Stoichevska, Violet Peng, Yong Y. Vashi, Aditya V. Werkmeister, Jerome A. Dumsday, Geoff J. Ramshaw, John A. M. |
description | Recombinant bacterial collagens provide a new opportunity for safe biomedical materials. They are readily expressed in Escherichia coli in good yield and can be readily purified by simple approaches. However, recombinant proteins are limited in that direct secondary modification during expression is generally not easily achieved. Thus, inclusion of unusual amino acids, cyclic peptides, sugars, lipids, and other complex functions generally needs to be achieved chemically after synthesis and extraction. In the present study, we have illustrated that bacterial collagens that have had their sequences modified to include cysteine residue(s), which are not normally present in bacterial collagen‐like sequences, enable a range of specific chemical modification reactions to be produced. Various model reactions were shown to be effective for modifying the collagens. The ability to include alkyne (or azide) functions allows the extensive range of substitutions that are available via “click” chemistry to be accessed. When bifunctional reagents were used, some crosslinking occurred to give higher molecular weight polymeric proteins, but gels were not formed. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 806–813, 2017. |
doi_str_mv | 10.1002/jbm.a.35957 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880036813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4309455401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5007-9d6602fde54f1ad7843c3cea6e8e77f7c4d1ff82d826398b052de7ec6e95ef073</originalsourceid><addsrcrecordid>eNqN0btuFDEUBmALgUiyUNEjSzRI0Sy-21OGKNwURAHUltdzvHgzYw_jGaHteASekSfBywYKCpTKlvXp1zn-EXpCyZoSwl7sNsParblspb6HTqmUrBGtkvcPd9E2nLXqBJ2VsqtYEckeohOmDVFCiFN0c5W2MQFMMW1xGcHHED32X2CI3vV4yN3hwc0xJ1ziDAXHNGfssM9977aQfn7_0ccbwOOUZ4gJhykP-OM8wThnn71fCh73uUIoj9CD4PoCj2_PFfr86urT5Zvm-sPrt5cX142XhOim7ZQiLHQgRaCu00Zwzz04BQa0DtqLjoZgWGeY4q3Z1JU60OAVtBIC0XyFnh9z60xfFyizHWLxUOdNkJdiqTGEcGUovwNVhlPNNL0D5Urz-sFtpc_-obu8TKnufAhknAtaR1-h86PyUy5lgmDHKQ5u2ltK7KFZW5u1zv5utuqnt5nLZoDur_1TZQXsCL7FHvb_y7LvXr6_OKb-AuWysDU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1862334126</pqid></control><display><type>article</type><title>Engineering specific chemical modification sites into a collagen‐like protein from Streptococcus pyogenes</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Stoichevska, Violet ; Peng, Yong Y. ; Vashi, Aditya V. ; Werkmeister, Jerome A. ; Dumsday, Geoff J. ; Ramshaw, John A. M.</creator><creatorcontrib>Stoichevska, Violet ; Peng, Yong Y. ; Vashi, Aditya V. ; Werkmeister, Jerome A. ; Dumsday, Geoff J. ; Ramshaw, John A. M.</creatorcontrib><description>Recombinant bacterial collagens provide a new opportunity for safe biomedical materials. They are readily expressed in Escherichia coli in good yield and can be readily purified by simple approaches. However, recombinant proteins are limited in that direct secondary modification during expression is generally not easily achieved. Thus, inclusion of unusual amino acids, cyclic peptides, sugars, lipids, and other complex functions generally needs to be achieved chemically after synthesis and extraction. In the present study, we have illustrated that bacterial collagens that have had their sequences modified to include cysteine residue(s), which are not normally present in bacterial collagen‐like sequences, enable a range of specific chemical modification reactions to be produced. Various model reactions were shown to be effective for modifying the collagens. The ability to include alkyne (or azide) functions allows the extensive range of substitutions that are available via “click” chemistry to be accessed. When bifunctional reagents were used, some crosslinking occurred to give higher molecular weight polymeric proteins, but gels were not formed. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 806–813, 2017.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.35957</identifier><identifier>PMID: 27806444</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Bacteria ; bacterial collagen ; Bacterial Proteins - biosynthesis ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Biomedical materials ; chemical modification ; Collagen - biosynthesis ; Collagen - chemistry ; Collagen - genetics ; Collagens ; crosslinking ; Escherichia coli ; Mathematical models ; Protein Engineering ; Proteins ; Recombinant ; Recombinant Proteins - biosynthesis ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Streptococcus pyogenes ; Streptococcus pyogenes - cytology ; Streptococcus pyogenes - genetics ; Streptococcus pyogenes - metabolism ; Surgical implants ; Synthesis (chemistry)</subject><ispartof>Journal of biomedical materials research. Part A, 2017-03, Vol.105 (3), p.806-813</ispartof><rights>2016 Wiley Periodicals, Inc.</rights><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5007-9d6602fde54f1ad7843c3cea6e8e77f7c4d1ff82d826398b052de7ec6e95ef073</citedby><cites>FETCH-LOGICAL-c5007-9d6602fde54f1ad7843c3cea6e8e77f7c4d1ff82d826398b052de7ec6e95ef073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.35957$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.35957$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27806444$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stoichevska, Violet</creatorcontrib><creatorcontrib>Peng, Yong Y.</creatorcontrib><creatorcontrib>Vashi, Aditya V.</creatorcontrib><creatorcontrib>Werkmeister, Jerome A.</creatorcontrib><creatorcontrib>Dumsday, Geoff J.</creatorcontrib><creatorcontrib>Ramshaw, John A. M.</creatorcontrib><title>Engineering specific chemical modification sites into a collagen‐like protein from Streptococcus pyogenes</title><title>Journal of biomedical materials research. Part A</title><addtitle>J Biomed Mater Res A</addtitle><description>Recombinant bacterial collagens provide a new opportunity for safe biomedical materials. They are readily expressed in Escherichia coli in good yield and can be readily purified by simple approaches. However, recombinant proteins are limited in that direct secondary modification during expression is generally not easily achieved. Thus, inclusion of unusual amino acids, cyclic peptides, sugars, lipids, and other complex functions generally needs to be achieved chemically after synthesis and extraction. In the present study, we have illustrated that bacterial collagens that have had their sequences modified to include cysteine residue(s), which are not normally present in bacterial collagen‐like sequences, enable a range of specific chemical modification reactions to be produced. Various model reactions were shown to be effective for modifying the collagens. The ability to include alkyne (or azide) functions allows the extensive range of substitutions that are available via “click” chemistry to be accessed. When bifunctional reagents were used, some crosslinking occurred to give higher molecular weight polymeric proteins, but gels were not formed. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 806–813, 2017.</description><subject>Bacteria</subject><subject>bacterial collagen</subject><subject>Bacterial Proteins - biosynthesis</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Biomedical materials</subject><subject>chemical modification</subject><subject>Collagen - biosynthesis</subject><subject>Collagen - chemistry</subject><subject>Collagen - genetics</subject><subject>Collagens</subject><subject>crosslinking</subject><subject>Escherichia coli</subject><subject>Mathematical models</subject><subject>Protein Engineering</subject><subject>Proteins</subject><subject>Recombinant</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Streptococcus pyogenes</subject><subject>Streptococcus pyogenes - cytology</subject><subject>Streptococcus pyogenes - genetics</subject><subject>Streptococcus pyogenes - metabolism</subject><subject>Surgical implants</subject><subject>Synthesis (chemistry)</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0btuFDEUBmALgUiyUNEjSzRI0Sy-21OGKNwURAHUltdzvHgzYw_jGaHteASekSfBywYKCpTKlvXp1zn-EXpCyZoSwl7sNsParblspb6HTqmUrBGtkvcPd9E2nLXqBJ2VsqtYEckeohOmDVFCiFN0c5W2MQFMMW1xGcHHED32X2CI3vV4yN3hwc0xJ1ziDAXHNGfssM9977aQfn7_0ccbwOOUZ4gJhykP-OM8wThnn71fCh73uUIoj9CD4PoCj2_PFfr86urT5Zvm-sPrt5cX142XhOim7ZQiLHQgRaCu00Zwzz04BQa0DtqLjoZgWGeY4q3Z1JU60OAVtBIC0XyFnh9z60xfFyizHWLxUOdNkJdiqTGEcGUovwNVhlPNNL0D5Urz-sFtpc_-obu8TKnufAhknAtaR1-h86PyUy5lgmDHKQ5u2ltK7KFZW5u1zv5utuqnt5nLZoDur_1TZQXsCL7FHvb_y7LvXr6_OKb-AuWysDU</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Stoichevska, Violet</creator><creator>Peng, Yong Y.</creator><creator>Vashi, Aditya V.</creator><creator>Werkmeister, Jerome A.</creator><creator>Dumsday, Geoff J.</creator><creator>Ramshaw, John A. M.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>7QL</scope><scope>C1K</scope></search><sort><creationdate>201703</creationdate><title>Engineering specific chemical modification sites into a collagen‐like protein from Streptococcus pyogenes</title><author>Stoichevska, Violet ; Peng, Yong Y. ; Vashi, Aditya V. ; Werkmeister, Jerome A. ; Dumsday, Geoff J. ; Ramshaw, John A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5007-9d6602fde54f1ad7843c3cea6e8e77f7c4d1ff82d826398b052de7ec6e95ef073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bacteria</topic><topic>bacterial collagen</topic><topic>Bacterial Proteins - biosynthesis</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Biomedical materials</topic><topic>chemical modification</topic><topic>Collagen - biosynthesis</topic><topic>Collagen - chemistry</topic><topic>Collagen - genetics</topic><topic>Collagens</topic><topic>crosslinking</topic><topic>Escherichia coli</topic><topic>Mathematical models</topic><topic>Protein Engineering</topic><topic>Proteins</topic><topic>Recombinant</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Streptococcus pyogenes</topic><topic>Streptococcus pyogenes - cytology</topic><topic>Streptococcus pyogenes - genetics</topic><topic>Streptococcus pyogenes - metabolism</topic><topic>Surgical implants</topic><topic>Synthesis (chemistry)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stoichevska, Violet</creatorcontrib><creatorcontrib>Peng, Yong Y.</creatorcontrib><creatorcontrib>Vashi, Aditya V.</creatorcontrib><creatorcontrib>Werkmeister, Jerome A.</creatorcontrib><creatorcontrib>Dumsday, Geoff J.</creatorcontrib><creatorcontrib>Ramshaw, John A. M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stoichevska, Violet</au><au>Peng, Yong Y.</au><au>Vashi, Aditya V.</au><au>Werkmeister, Jerome A.</au><au>Dumsday, Geoff J.</au><au>Ramshaw, John A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering specific chemical modification sites into a collagen‐like protein from Streptococcus pyogenes</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J Biomed Mater Res A</addtitle><date>2017-03</date><risdate>2017</risdate><volume>105</volume><issue>3</issue><spage>806</spage><epage>813</epage><pages>806-813</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>Recombinant bacterial collagens provide a new opportunity for safe biomedical materials. They are readily expressed in Escherichia coli in good yield and can be readily purified by simple approaches. However, recombinant proteins are limited in that direct secondary modification during expression is generally not easily achieved. Thus, inclusion of unusual amino acids, cyclic peptides, sugars, lipids, and other complex functions generally needs to be achieved chemically after synthesis and extraction. In the present study, we have illustrated that bacterial collagens that have had their sequences modified to include cysteine residue(s), which are not normally present in bacterial collagen‐like sequences, enable a range of specific chemical modification reactions to be produced. Various model reactions were shown to be effective for modifying the collagens. The ability to include alkyne (or azide) functions allows the extensive range of substitutions that are available via “click” chemistry to be accessed. When bifunctional reagents were used, some crosslinking occurred to give higher molecular weight polymeric proteins, but gels were not formed. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 806–813, 2017.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>27806444</pmid><doi>10.1002/jbm.a.35957</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-3296 |
ispartof | Journal of biomedical materials research. Part A, 2017-03, Vol.105 (3), p.806-813 |
issn | 1549-3296 1552-4965 |
language | eng |
recordid | cdi_proquest_miscellaneous_1880036813 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE |
subjects | Bacteria bacterial collagen Bacterial Proteins - biosynthesis Bacterial Proteins - chemistry Bacterial Proteins - genetics Biomedical materials chemical modification Collagen - biosynthesis Collagen - chemistry Collagen - genetics Collagens crosslinking Escherichia coli Mathematical models Protein Engineering Proteins Recombinant Recombinant Proteins - biosynthesis Recombinant Proteins - chemistry Recombinant Proteins - genetics Streptococcus pyogenes Streptococcus pyogenes - cytology Streptococcus pyogenes - genetics Streptococcus pyogenes - metabolism Surgical implants Synthesis (chemistry) |
title | Engineering specific chemical modification sites into a collagen‐like protein from Streptococcus pyogenes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A09%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20specific%20chemical%20modification%20sites%20into%20a%20collagen%E2%80%90like%20protein%20from%20Streptococcus%20pyogenes&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Stoichevska,%20Violet&rft.date=2017-03&rft.volume=105&rft.issue=3&rft.spage=806&rft.epage=813&rft.pages=806-813&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.35957&rft_dat=%3Cproquest_cross%3E4309455401%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1862334126&rft_id=info:pmid/27806444&rfr_iscdi=true |