Engineering specific chemical modification sites into a collagen‐like protein from Streptococcus pyogenes

Recombinant bacterial collagens provide a new opportunity for safe biomedical materials. They are readily expressed in Escherichia coli in good yield and can be readily purified by simple approaches. However, recombinant proteins are limited in that direct secondary modification during expression is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part A 2017-03, Vol.105 (3), p.806-813
Hauptverfasser: Stoichevska, Violet, Peng, Yong Y., Vashi, Aditya V., Werkmeister, Jerome A., Dumsday, Geoff J., Ramshaw, John A. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 813
container_issue 3
container_start_page 806
container_title Journal of biomedical materials research. Part A
container_volume 105
creator Stoichevska, Violet
Peng, Yong Y.
Vashi, Aditya V.
Werkmeister, Jerome A.
Dumsday, Geoff J.
Ramshaw, John A. M.
description Recombinant bacterial collagens provide a new opportunity for safe biomedical materials. They are readily expressed in Escherichia coli in good yield and can be readily purified by simple approaches. However, recombinant proteins are limited in that direct secondary modification during expression is generally not easily achieved. Thus, inclusion of unusual amino acids, cyclic peptides, sugars, lipids, and other complex functions generally needs to be achieved chemically after synthesis and extraction. In the present study, we have illustrated that bacterial collagens that have had their sequences modified to include cysteine residue(s), which are not normally present in bacterial collagen‐like sequences, enable a range of specific chemical modification reactions to be produced. Various model reactions were shown to be effective for modifying the collagens. The ability to include alkyne (or azide) functions allows the extensive range of substitutions that are available via “click” chemistry to be accessed. When bifunctional reagents were used, some crosslinking occurred to give higher molecular weight polymeric proteins, but gels were not formed. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 806–813, 2017.
doi_str_mv 10.1002/jbm.a.35957
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880036813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4309455401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5007-9d6602fde54f1ad7843c3cea6e8e77f7c4d1ff82d826398b052de7ec6e95ef073</originalsourceid><addsrcrecordid>eNqN0btuFDEUBmALgUiyUNEjSzRI0Sy-21OGKNwURAHUltdzvHgzYw_jGaHteASekSfBywYKCpTKlvXp1zn-EXpCyZoSwl7sNsParblspb6HTqmUrBGtkvcPd9E2nLXqBJ2VsqtYEckeohOmDVFCiFN0c5W2MQFMMW1xGcHHED32X2CI3vV4yN3hwc0xJ1ziDAXHNGfssM9977aQfn7_0ccbwOOUZ4gJhykP-OM8wThnn71fCh73uUIoj9CD4PoCj2_PFfr86urT5Zvm-sPrt5cX142XhOim7ZQiLHQgRaCu00Zwzz04BQa0DtqLjoZgWGeY4q3Z1JU60OAVtBIC0XyFnh9z60xfFyizHWLxUOdNkJdiqTGEcGUovwNVhlPNNL0D5Urz-sFtpc_-obu8TKnufAhknAtaR1-h86PyUy5lgmDHKQ5u2ltK7KFZW5u1zv5utuqnt5nLZoDur_1TZQXsCL7FHvb_y7LvXr6_OKb-AuWysDU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1862334126</pqid></control><display><type>article</type><title>Engineering specific chemical modification sites into a collagen‐like protein from Streptococcus pyogenes</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Stoichevska, Violet ; Peng, Yong Y. ; Vashi, Aditya V. ; Werkmeister, Jerome A. ; Dumsday, Geoff J. ; Ramshaw, John A. M.</creator><creatorcontrib>Stoichevska, Violet ; Peng, Yong Y. ; Vashi, Aditya V. ; Werkmeister, Jerome A. ; Dumsday, Geoff J. ; Ramshaw, John A. M.</creatorcontrib><description>Recombinant bacterial collagens provide a new opportunity for safe biomedical materials. They are readily expressed in Escherichia coli in good yield and can be readily purified by simple approaches. However, recombinant proteins are limited in that direct secondary modification during expression is generally not easily achieved. Thus, inclusion of unusual amino acids, cyclic peptides, sugars, lipids, and other complex functions generally needs to be achieved chemically after synthesis and extraction. In the present study, we have illustrated that bacterial collagens that have had their sequences modified to include cysteine residue(s), which are not normally present in bacterial collagen‐like sequences, enable a range of specific chemical modification reactions to be produced. Various model reactions were shown to be effective for modifying the collagens. The ability to include alkyne (or azide) functions allows the extensive range of substitutions that are available via “click” chemistry to be accessed. When bifunctional reagents were used, some crosslinking occurred to give higher molecular weight polymeric proteins, but gels were not formed. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 806–813, 2017.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.35957</identifier><identifier>PMID: 27806444</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Bacteria ; bacterial collagen ; Bacterial Proteins - biosynthesis ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Biomedical materials ; chemical modification ; Collagen - biosynthesis ; Collagen - chemistry ; Collagen - genetics ; Collagens ; crosslinking ; Escherichia coli ; Mathematical models ; Protein Engineering ; Proteins ; Recombinant ; Recombinant Proteins - biosynthesis ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Streptococcus pyogenes ; Streptococcus pyogenes - cytology ; Streptococcus pyogenes - genetics ; Streptococcus pyogenes - metabolism ; Surgical implants ; Synthesis (chemistry)</subject><ispartof>Journal of biomedical materials research. Part A, 2017-03, Vol.105 (3), p.806-813</ispartof><rights>2016 Wiley Periodicals, Inc.</rights><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5007-9d6602fde54f1ad7843c3cea6e8e77f7c4d1ff82d826398b052de7ec6e95ef073</citedby><cites>FETCH-LOGICAL-c5007-9d6602fde54f1ad7843c3cea6e8e77f7c4d1ff82d826398b052de7ec6e95ef073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.35957$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.35957$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27806444$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stoichevska, Violet</creatorcontrib><creatorcontrib>Peng, Yong Y.</creatorcontrib><creatorcontrib>Vashi, Aditya V.</creatorcontrib><creatorcontrib>Werkmeister, Jerome A.</creatorcontrib><creatorcontrib>Dumsday, Geoff J.</creatorcontrib><creatorcontrib>Ramshaw, John A. M.</creatorcontrib><title>Engineering specific chemical modification sites into a collagen‐like protein from Streptococcus pyogenes</title><title>Journal of biomedical materials research. Part A</title><addtitle>J Biomed Mater Res A</addtitle><description>Recombinant bacterial collagens provide a new opportunity for safe biomedical materials. They are readily expressed in Escherichia coli in good yield and can be readily purified by simple approaches. However, recombinant proteins are limited in that direct secondary modification during expression is generally not easily achieved. Thus, inclusion of unusual amino acids, cyclic peptides, sugars, lipids, and other complex functions generally needs to be achieved chemically after synthesis and extraction. In the present study, we have illustrated that bacterial collagens that have had their sequences modified to include cysteine residue(s), which are not normally present in bacterial collagen‐like sequences, enable a range of specific chemical modification reactions to be produced. Various model reactions were shown to be effective for modifying the collagens. The ability to include alkyne (or azide) functions allows the extensive range of substitutions that are available via “click” chemistry to be accessed. When bifunctional reagents were used, some crosslinking occurred to give higher molecular weight polymeric proteins, but gels were not formed. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 806–813, 2017.</description><subject>Bacteria</subject><subject>bacterial collagen</subject><subject>Bacterial Proteins - biosynthesis</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Biomedical materials</subject><subject>chemical modification</subject><subject>Collagen - biosynthesis</subject><subject>Collagen - chemistry</subject><subject>Collagen - genetics</subject><subject>Collagens</subject><subject>crosslinking</subject><subject>Escherichia coli</subject><subject>Mathematical models</subject><subject>Protein Engineering</subject><subject>Proteins</subject><subject>Recombinant</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Streptococcus pyogenes</subject><subject>Streptococcus pyogenes - cytology</subject><subject>Streptococcus pyogenes - genetics</subject><subject>Streptococcus pyogenes - metabolism</subject><subject>Surgical implants</subject><subject>Synthesis (chemistry)</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0btuFDEUBmALgUiyUNEjSzRI0Sy-21OGKNwURAHUltdzvHgzYw_jGaHteASekSfBywYKCpTKlvXp1zn-EXpCyZoSwl7sNsParblspb6HTqmUrBGtkvcPd9E2nLXqBJ2VsqtYEckeohOmDVFCiFN0c5W2MQFMMW1xGcHHED32X2CI3vV4yN3hwc0xJ1ziDAXHNGfssM9977aQfn7_0ccbwOOUZ4gJhykP-OM8wThnn71fCh73uUIoj9CD4PoCj2_PFfr86urT5Zvm-sPrt5cX142XhOim7ZQiLHQgRaCu00Zwzz04BQa0DtqLjoZgWGeY4q3Z1JU60OAVtBIC0XyFnh9z60xfFyizHWLxUOdNkJdiqTGEcGUovwNVhlPNNL0D5Urz-sFtpc_-obu8TKnufAhknAtaR1-h86PyUy5lgmDHKQ5u2ltK7KFZW5u1zv5utuqnt5nLZoDur_1TZQXsCL7FHvb_y7LvXr6_OKb-AuWysDU</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Stoichevska, Violet</creator><creator>Peng, Yong Y.</creator><creator>Vashi, Aditya V.</creator><creator>Werkmeister, Jerome A.</creator><creator>Dumsday, Geoff J.</creator><creator>Ramshaw, John A. M.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>7QL</scope><scope>C1K</scope></search><sort><creationdate>201703</creationdate><title>Engineering specific chemical modification sites into a collagen‐like protein from Streptococcus pyogenes</title><author>Stoichevska, Violet ; Peng, Yong Y. ; Vashi, Aditya V. ; Werkmeister, Jerome A. ; Dumsday, Geoff J. ; Ramshaw, John A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5007-9d6602fde54f1ad7843c3cea6e8e77f7c4d1ff82d826398b052de7ec6e95ef073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bacteria</topic><topic>bacterial collagen</topic><topic>Bacterial Proteins - biosynthesis</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Biomedical materials</topic><topic>chemical modification</topic><topic>Collagen - biosynthesis</topic><topic>Collagen - chemistry</topic><topic>Collagen - genetics</topic><topic>Collagens</topic><topic>crosslinking</topic><topic>Escherichia coli</topic><topic>Mathematical models</topic><topic>Protein Engineering</topic><topic>Proteins</topic><topic>Recombinant</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Streptococcus pyogenes</topic><topic>Streptococcus pyogenes - cytology</topic><topic>Streptococcus pyogenes - genetics</topic><topic>Streptococcus pyogenes - metabolism</topic><topic>Surgical implants</topic><topic>Synthesis (chemistry)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stoichevska, Violet</creatorcontrib><creatorcontrib>Peng, Yong Y.</creatorcontrib><creatorcontrib>Vashi, Aditya V.</creatorcontrib><creatorcontrib>Werkmeister, Jerome A.</creatorcontrib><creatorcontrib>Dumsday, Geoff J.</creatorcontrib><creatorcontrib>Ramshaw, John A. M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stoichevska, Violet</au><au>Peng, Yong Y.</au><au>Vashi, Aditya V.</au><au>Werkmeister, Jerome A.</au><au>Dumsday, Geoff J.</au><au>Ramshaw, John A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering specific chemical modification sites into a collagen‐like protein from Streptococcus pyogenes</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J Biomed Mater Res A</addtitle><date>2017-03</date><risdate>2017</risdate><volume>105</volume><issue>3</issue><spage>806</spage><epage>813</epage><pages>806-813</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>Recombinant bacterial collagens provide a new opportunity for safe biomedical materials. They are readily expressed in Escherichia coli in good yield and can be readily purified by simple approaches. However, recombinant proteins are limited in that direct secondary modification during expression is generally not easily achieved. Thus, inclusion of unusual amino acids, cyclic peptides, sugars, lipids, and other complex functions generally needs to be achieved chemically after synthesis and extraction. In the present study, we have illustrated that bacterial collagens that have had their sequences modified to include cysteine residue(s), which are not normally present in bacterial collagen‐like sequences, enable a range of specific chemical modification reactions to be produced. Various model reactions were shown to be effective for modifying the collagens. The ability to include alkyne (or azide) functions allows the extensive range of substitutions that are available via “click” chemistry to be accessed. When bifunctional reagents were used, some crosslinking occurred to give higher molecular weight polymeric proteins, but gels were not formed. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 806–813, 2017.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>27806444</pmid><doi>10.1002/jbm.a.35957</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of biomedical materials research. Part A, 2017-03, Vol.105 (3), p.806-813
issn 1549-3296
1552-4965
language eng
recordid cdi_proquest_miscellaneous_1880036813
source Wiley Online Library - AutoHoldings Journals; MEDLINE
subjects Bacteria
bacterial collagen
Bacterial Proteins - biosynthesis
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Biomedical materials
chemical modification
Collagen - biosynthesis
Collagen - chemistry
Collagen - genetics
Collagens
crosslinking
Escherichia coli
Mathematical models
Protein Engineering
Proteins
Recombinant
Recombinant Proteins - biosynthesis
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Streptococcus pyogenes
Streptococcus pyogenes - cytology
Streptococcus pyogenes - genetics
Streptococcus pyogenes - metabolism
Surgical implants
Synthesis (chemistry)
title Engineering specific chemical modification sites into a collagen‐like protein from Streptococcus pyogenes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A09%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20specific%20chemical%20modification%20sites%20into%20a%20collagen%E2%80%90like%20protein%20from%20Streptococcus%20pyogenes&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Stoichevska,%20Violet&rft.date=2017-03&rft.volume=105&rft.issue=3&rft.spage=806&rft.epage=813&rft.pages=806-813&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.35957&rft_dat=%3Cproquest_cross%3E4309455401%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1862334126&rft_id=info:pmid/27806444&rfr_iscdi=true