Micromechanics of tensile twinning in magnesium gleaned from molecular dynamics simulations
This work discusses coarse-grained micromechanics of tensile twinning in magnesium (Mg) extracted from molecular dynamics (MD) simulations. We perform MD simulations on Mg single crystal orientations with initial idealized defect structures at temperatures T=5K and 300K. A detailed atomistic analysi...
Gespeichert in:
Veröffentlicht in: | Acta materialia 2014-05, Vol.69, p.326-342 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 342 |
---|---|
container_issue | |
container_start_page | 326 |
container_title | Acta materialia |
container_volume | 69 |
creator | Aghababaei, Ramin Joshi, Shailendra P. |
description | This work discusses coarse-grained micromechanics of tensile twinning in magnesium (Mg) extracted from molecular dynamics (MD) simulations. We perform MD simulations on Mg single crystal orientations with initial idealized defect structures at temperatures T=5K and 300K. A detailed atomistic analysis reveals that tensile loading along the c-axis of a defective crystal causes an initial incomplete slip ahead of the defect on the first-order pyramidal 〈c+a〉 planes, followed by the formation of a {112¯1} twin embryo and basal dislocation. These mechanisms aid the formation of {101¯2} twins, which evolve rapidly while {112¯1} twins disappear. We present a micromechanics picture of the deformation-induced twin structure evolution that is tracked by incorporating a twin orientation analysis (TOA) scheme within Open Visualization Tool. The functional dependencies of the volume fraction (v.f.) and number of twins on the overall plastic strain extracted from this analysis provide a basis to construct kinetic laws for twin evolution in terms of nucleation, growth and coalescence. Preliminary results indicate that {101¯2} v.f. evolution is dominated by twin growth in the presence of defects at room temperature, and it may not be strongly rate dependent. |
doi_str_mv | 10.1016/j.actamat.2014.01.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880036021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645414000238</els_id><sourcerecordid>1880036021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-c63269b9d38a6f6bc5bbc314ab51ec88a88be0d3f5ac2b6386cbec3768bcffbd3</originalsourceid><addsrcrecordid>eNqFUE1rGzEQXUoKTdL8hIAuhV7WkVYflk-hhKYtpPTSnnoQo9mRK7PSJtK6Jf8-Mja9Bh7MMLz3ZuZ13bXgK8GFudmtABdIsKwGLtSKiwb1pjsXdi37QWl51nqpN71RWr3rLmrdcS6GteLn3e_vEcucCP9AjljZHNhCucaJ2PIv5hzzlsXMEmwz1bhPbDsRZBpZaCqW5olwP0Fh43OGdDCoMbXBEudc33dvA0yVrk71svt1__nn3df-4ceXb3efHnpU0i49GjmYjd-M0oIJxqP2HqVQ4LUgtBas9cRHGTTg4I20Bj2hXBvrMQQ_ysvu49H3scxPe6qLS7EiTVM7dN5XJ6zlXBo-iEbVR2p7utZCwT2WmKA8O8HdIUy3c6cw3SFMx0WDaroPpxVQEaZQIGOs_8WDlVorzRvv9sij9u_fSMVVjJSRxlgIFzfO8ZVNL1SrkAU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880036021</pqid></control><display><type>article</type><title>Micromechanics of tensile twinning in magnesium gleaned from molecular dynamics simulations</title><source>Elsevier ScienceDirect Journals</source><creator>Aghababaei, Ramin ; Joshi, Shailendra P.</creator><creatorcontrib>Aghababaei, Ramin ; Joshi, Shailendra P.</creatorcontrib><description>This work discusses coarse-grained micromechanics of tensile twinning in magnesium (Mg) extracted from molecular dynamics (MD) simulations. We perform MD simulations on Mg single crystal orientations with initial idealized defect structures at temperatures T=5K and 300K. A detailed atomistic analysis reveals that tensile loading along the c-axis of a defective crystal causes an initial incomplete slip ahead of the defect on the first-order pyramidal 〈c+a〉 planes, followed by the formation of a {112¯1} twin embryo and basal dislocation. These mechanisms aid the formation of {101¯2} twins, which evolve rapidly while {112¯1} twins disappear. We present a micromechanics picture of the deformation-induced twin structure evolution that is tracked by incorporating a twin orientation analysis (TOA) scheme within Open Visualization Tool. The functional dependencies of the volume fraction (v.f.) and number of twins on the overall plastic strain extracted from this analysis provide a basis to construct kinetic laws for twin evolution in terms of nucleation, growth and coalescence. Preliminary results indicate that {101¯2} v.f. evolution is dominated by twin growth in the presence of defects at room temperature, and it may not be strongly rate dependent.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2014.01.014</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Continuum plasticity ; Crystal defects ; Deformation twinning ; Evolution ; Exact sciences and technology ; Magnesium ; MD simulations ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Micromechanics ; Molecular dynamics ; Orientation ; Simulation ; Twinning</subject><ispartof>Acta materialia, 2014-05, Vol.69, p.326-342</ispartof><rights>2014 Acta Materialia Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-c63269b9d38a6f6bc5bbc314ab51ec88a88be0d3f5ac2b6386cbec3768bcffbd3</citedby><cites>FETCH-LOGICAL-c438t-c63269b9d38a6f6bc5bbc314ab51ec88a88be0d3f5ac2b6386cbec3768bcffbd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359645414000238$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28355450$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Aghababaei, Ramin</creatorcontrib><creatorcontrib>Joshi, Shailendra P.</creatorcontrib><title>Micromechanics of tensile twinning in magnesium gleaned from molecular dynamics simulations</title><title>Acta materialia</title><description>This work discusses coarse-grained micromechanics of tensile twinning in magnesium (Mg) extracted from molecular dynamics (MD) simulations. We perform MD simulations on Mg single crystal orientations with initial idealized defect structures at temperatures T=5K and 300K. A detailed atomistic analysis reveals that tensile loading along the c-axis of a defective crystal causes an initial incomplete slip ahead of the defect on the first-order pyramidal 〈c+a〉 planes, followed by the formation of a {112¯1} twin embryo and basal dislocation. These mechanisms aid the formation of {101¯2} twins, which evolve rapidly while {112¯1} twins disappear. We present a micromechanics picture of the deformation-induced twin structure evolution that is tracked by incorporating a twin orientation analysis (TOA) scheme within Open Visualization Tool. The functional dependencies of the volume fraction (v.f.) and number of twins on the overall plastic strain extracted from this analysis provide a basis to construct kinetic laws for twin evolution in terms of nucleation, growth and coalescence. Preliminary results indicate that {101¯2} v.f. evolution is dominated by twin growth in the presence of defects at room temperature, and it may not be strongly rate dependent.</description><subject>Applied sciences</subject><subject>Continuum plasticity</subject><subject>Crystal defects</subject><subject>Deformation twinning</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Magnesium</subject><subject>MD simulations</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Micromechanics</subject><subject>Molecular dynamics</subject><subject>Orientation</subject><subject>Simulation</subject><subject>Twinning</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFUE1rGzEQXUoKTdL8hIAuhV7WkVYflk-hhKYtpPTSnnoQo9mRK7PSJtK6Jf8-Mja9Bh7MMLz3ZuZ13bXgK8GFudmtABdIsKwGLtSKiwb1pjsXdi37QWl51nqpN71RWr3rLmrdcS6GteLn3e_vEcucCP9AjljZHNhCucaJ2PIv5hzzlsXMEmwz1bhPbDsRZBpZaCqW5olwP0Fh43OGdDCoMbXBEudc33dvA0yVrk71svt1__nn3df-4ceXb3efHnpU0i49GjmYjd-M0oIJxqP2HqVQ4LUgtBas9cRHGTTg4I20Bj2hXBvrMQQ_ysvu49H3scxPe6qLS7EiTVM7dN5XJ6zlXBo-iEbVR2p7utZCwT2WmKA8O8HdIUy3c6cw3SFMx0WDaroPpxVQEaZQIGOs_8WDlVorzRvv9sij9u_fSMVVjJSRxlgIFzfO8ZVNL1SrkAU</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Aghababaei, Ramin</creator><creator>Joshi, Shailendra P.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20140501</creationdate><title>Micromechanics of tensile twinning in magnesium gleaned from molecular dynamics simulations</title><author>Aghababaei, Ramin ; Joshi, Shailendra P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-c63269b9d38a6f6bc5bbc314ab51ec88a88be0d3f5ac2b6386cbec3768bcffbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Continuum plasticity</topic><topic>Crystal defects</topic><topic>Deformation twinning</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Magnesium</topic><topic>MD simulations</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Micromechanics</topic><topic>Molecular dynamics</topic><topic>Orientation</topic><topic>Simulation</topic><topic>Twinning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aghababaei, Ramin</creatorcontrib><creatorcontrib>Joshi, Shailendra P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aghababaei, Ramin</au><au>Joshi, Shailendra P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micromechanics of tensile twinning in magnesium gleaned from molecular dynamics simulations</atitle><jtitle>Acta materialia</jtitle><date>2014-05-01</date><risdate>2014</risdate><volume>69</volume><spage>326</spage><epage>342</epage><pages>326-342</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>This work discusses coarse-grained micromechanics of tensile twinning in magnesium (Mg) extracted from molecular dynamics (MD) simulations. We perform MD simulations on Mg single crystal orientations with initial idealized defect structures at temperatures T=5K and 300K. A detailed atomistic analysis reveals that tensile loading along the c-axis of a defective crystal causes an initial incomplete slip ahead of the defect on the first-order pyramidal 〈c+a〉 planes, followed by the formation of a {112¯1} twin embryo and basal dislocation. These mechanisms aid the formation of {101¯2} twins, which evolve rapidly while {112¯1} twins disappear. We present a micromechanics picture of the deformation-induced twin structure evolution that is tracked by incorporating a twin orientation analysis (TOA) scheme within Open Visualization Tool. The functional dependencies of the volume fraction (v.f.) and number of twins on the overall plastic strain extracted from this analysis provide a basis to construct kinetic laws for twin evolution in terms of nucleation, growth and coalescence. Preliminary results indicate that {101¯2} v.f. evolution is dominated by twin growth in the presence of defects at room temperature, and it may not be strongly rate dependent.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2014.01.014</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6454 |
ispartof | Acta materialia, 2014-05, Vol.69, p.326-342 |
issn | 1359-6454 1873-2453 |
language | eng |
recordid | cdi_proquest_miscellaneous_1880036021 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Continuum plasticity Crystal defects Deformation twinning Evolution Exact sciences and technology Magnesium MD simulations Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metals. Metallurgy Micromechanics Molecular dynamics Orientation Simulation Twinning |
title | Micromechanics of tensile twinning in magnesium gleaned from molecular dynamics simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A20%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micromechanics%20of%20tensile%20twinning%20in%20magnesium%20gleaned%20from%20molecular%20dynamics%20simulations&rft.jtitle=Acta%20materialia&rft.au=Aghababaei,%20Ramin&rft.date=2014-05-01&rft.volume=69&rft.spage=326&rft.epage=342&rft.pages=326-342&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2014.01.014&rft_dat=%3Cproquest_cross%3E1880036021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880036021&rft_id=info:pmid/&rft_els_id=S1359645414000238&rfr_iscdi=true |