Micromechanics of tensile twinning in magnesium gleaned from molecular dynamics simulations

This work discusses coarse-grained micromechanics of tensile twinning in magnesium (Mg) extracted from molecular dynamics (MD) simulations. We perform MD simulations on Mg single crystal orientations with initial idealized defect structures at temperatures T=5K and 300K. A detailed atomistic analysi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2014-05, Vol.69, p.326-342
Hauptverfasser: Aghababaei, Ramin, Joshi, Shailendra P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 342
container_issue
container_start_page 326
container_title Acta materialia
container_volume 69
creator Aghababaei, Ramin
Joshi, Shailendra P.
description This work discusses coarse-grained micromechanics of tensile twinning in magnesium (Mg) extracted from molecular dynamics (MD) simulations. We perform MD simulations on Mg single crystal orientations with initial idealized defect structures at temperatures T=5K and 300K. A detailed atomistic analysis reveals that tensile loading along the c-axis of a defective crystal causes an initial incomplete slip ahead of the defect on the first-order pyramidal 〈c+a〉 planes, followed by the formation of a {112¯1} twin embryo and basal dislocation. These mechanisms aid the formation of {101¯2} twins, which evolve rapidly while {112¯1} twins disappear. We present a micromechanics picture of the deformation-induced twin structure evolution that is tracked by incorporating a twin orientation analysis (TOA) scheme within Open Visualization Tool. The functional dependencies of the volume fraction (v.f.) and number of twins on the overall plastic strain extracted from this analysis provide a basis to construct kinetic laws for twin evolution in terms of nucleation, growth and coalescence. Preliminary results indicate that {101¯2} v.f. evolution is dominated by twin growth in the presence of defects at room temperature, and it may not be strongly rate dependent.
doi_str_mv 10.1016/j.actamat.2014.01.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880036021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645414000238</els_id><sourcerecordid>1880036021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-c63269b9d38a6f6bc5bbc314ab51ec88a88be0d3f5ac2b6386cbec3768bcffbd3</originalsourceid><addsrcrecordid>eNqFUE1rGzEQXUoKTdL8hIAuhV7WkVYflk-hhKYtpPTSnnoQo9mRK7PSJtK6Jf8-Mja9Bh7MMLz3ZuZ13bXgK8GFudmtABdIsKwGLtSKiwb1pjsXdi37QWl51nqpN71RWr3rLmrdcS6GteLn3e_vEcucCP9AjljZHNhCucaJ2PIv5hzzlsXMEmwz1bhPbDsRZBpZaCqW5olwP0Fh43OGdDCoMbXBEudc33dvA0yVrk71svt1__nn3df-4ceXb3efHnpU0i49GjmYjd-M0oIJxqP2HqVQ4LUgtBas9cRHGTTg4I20Bj2hXBvrMQQ_ysvu49H3scxPe6qLS7EiTVM7dN5XJ6zlXBo-iEbVR2p7utZCwT2WmKA8O8HdIUy3c6cw3SFMx0WDaroPpxVQEaZQIGOs_8WDlVorzRvv9sij9u_fSMVVjJSRxlgIFzfO8ZVNL1SrkAU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880036021</pqid></control><display><type>article</type><title>Micromechanics of tensile twinning in magnesium gleaned from molecular dynamics simulations</title><source>Elsevier ScienceDirect Journals</source><creator>Aghababaei, Ramin ; Joshi, Shailendra P.</creator><creatorcontrib>Aghababaei, Ramin ; Joshi, Shailendra P.</creatorcontrib><description>This work discusses coarse-grained micromechanics of tensile twinning in magnesium (Mg) extracted from molecular dynamics (MD) simulations. We perform MD simulations on Mg single crystal orientations with initial idealized defect structures at temperatures T=5K and 300K. A detailed atomistic analysis reveals that tensile loading along the c-axis of a defective crystal causes an initial incomplete slip ahead of the defect on the first-order pyramidal 〈c+a〉 planes, followed by the formation of a {112¯1} twin embryo and basal dislocation. These mechanisms aid the formation of {101¯2} twins, which evolve rapidly while {112¯1} twins disappear. We present a micromechanics picture of the deformation-induced twin structure evolution that is tracked by incorporating a twin orientation analysis (TOA) scheme within Open Visualization Tool. The functional dependencies of the volume fraction (v.f.) and number of twins on the overall plastic strain extracted from this analysis provide a basis to construct kinetic laws for twin evolution in terms of nucleation, growth and coalescence. Preliminary results indicate that {101¯2} v.f. evolution is dominated by twin growth in the presence of defects at room temperature, and it may not be strongly rate dependent.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2014.01.014</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Continuum plasticity ; Crystal defects ; Deformation twinning ; Evolution ; Exact sciences and technology ; Magnesium ; MD simulations ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Micromechanics ; Molecular dynamics ; Orientation ; Simulation ; Twinning</subject><ispartof>Acta materialia, 2014-05, Vol.69, p.326-342</ispartof><rights>2014 Acta Materialia Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-c63269b9d38a6f6bc5bbc314ab51ec88a88be0d3f5ac2b6386cbec3768bcffbd3</citedby><cites>FETCH-LOGICAL-c438t-c63269b9d38a6f6bc5bbc314ab51ec88a88be0d3f5ac2b6386cbec3768bcffbd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359645414000238$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28355450$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Aghababaei, Ramin</creatorcontrib><creatorcontrib>Joshi, Shailendra P.</creatorcontrib><title>Micromechanics of tensile twinning in magnesium gleaned from molecular dynamics simulations</title><title>Acta materialia</title><description>This work discusses coarse-grained micromechanics of tensile twinning in magnesium (Mg) extracted from molecular dynamics (MD) simulations. We perform MD simulations on Mg single crystal orientations with initial idealized defect structures at temperatures T=5K and 300K. A detailed atomistic analysis reveals that tensile loading along the c-axis of a defective crystal causes an initial incomplete slip ahead of the defect on the first-order pyramidal 〈c+a〉 planes, followed by the formation of a {112¯1} twin embryo and basal dislocation. These mechanisms aid the formation of {101¯2} twins, which evolve rapidly while {112¯1} twins disappear. We present a micromechanics picture of the deformation-induced twin structure evolution that is tracked by incorporating a twin orientation analysis (TOA) scheme within Open Visualization Tool. The functional dependencies of the volume fraction (v.f.) and number of twins on the overall plastic strain extracted from this analysis provide a basis to construct kinetic laws for twin evolution in terms of nucleation, growth and coalescence. Preliminary results indicate that {101¯2} v.f. evolution is dominated by twin growth in the presence of defects at room temperature, and it may not be strongly rate dependent.</description><subject>Applied sciences</subject><subject>Continuum plasticity</subject><subject>Crystal defects</subject><subject>Deformation twinning</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Magnesium</subject><subject>MD simulations</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Micromechanics</subject><subject>Molecular dynamics</subject><subject>Orientation</subject><subject>Simulation</subject><subject>Twinning</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFUE1rGzEQXUoKTdL8hIAuhV7WkVYflk-hhKYtpPTSnnoQo9mRK7PSJtK6Jf8-Mja9Bh7MMLz3ZuZ13bXgK8GFudmtABdIsKwGLtSKiwb1pjsXdi37QWl51nqpN71RWr3rLmrdcS6GteLn3e_vEcucCP9AjljZHNhCucaJ2PIv5hzzlsXMEmwz1bhPbDsRZBpZaCqW5olwP0Fh43OGdDCoMbXBEudc33dvA0yVrk71svt1__nn3df-4ceXb3efHnpU0i49GjmYjd-M0oIJxqP2HqVQ4LUgtBas9cRHGTTg4I20Bj2hXBvrMQQ_ysvu49H3scxPe6qLS7EiTVM7dN5XJ6zlXBo-iEbVR2p7utZCwT2WmKA8O8HdIUy3c6cw3SFMx0WDaroPpxVQEaZQIGOs_8WDlVorzRvv9sij9u_fSMVVjJSRxlgIFzfO8ZVNL1SrkAU</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Aghababaei, Ramin</creator><creator>Joshi, Shailendra P.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20140501</creationdate><title>Micromechanics of tensile twinning in magnesium gleaned from molecular dynamics simulations</title><author>Aghababaei, Ramin ; Joshi, Shailendra P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-c63269b9d38a6f6bc5bbc314ab51ec88a88be0d3f5ac2b6386cbec3768bcffbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Continuum plasticity</topic><topic>Crystal defects</topic><topic>Deformation twinning</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Magnesium</topic><topic>MD simulations</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Micromechanics</topic><topic>Molecular dynamics</topic><topic>Orientation</topic><topic>Simulation</topic><topic>Twinning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aghababaei, Ramin</creatorcontrib><creatorcontrib>Joshi, Shailendra P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aghababaei, Ramin</au><au>Joshi, Shailendra P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micromechanics of tensile twinning in magnesium gleaned from molecular dynamics simulations</atitle><jtitle>Acta materialia</jtitle><date>2014-05-01</date><risdate>2014</risdate><volume>69</volume><spage>326</spage><epage>342</epage><pages>326-342</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>This work discusses coarse-grained micromechanics of tensile twinning in magnesium (Mg) extracted from molecular dynamics (MD) simulations. We perform MD simulations on Mg single crystal orientations with initial idealized defect structures at temperatures T=5K and 300K. A detailed atomistic analysis reveals that tensile loading along the c-axis of a defective crystal causes an initial incomplete slip ahead of the defect on the first-order pyramidal 〈c+a〉 planes, followed by the formation of a {112¯1} twin embryo and basal dislocation. These mechanisms aid the formation of {101¯2} twins, which evolve rapidly while {112¯1} twins disappear. We present a micromechanics picture of the deformation-induced twin structure evolution that is tracked by incorporating a twin orientation analysis (TOA) scheme within Open Visualization Tool. The functional dependencies of the volume fraction (v.f.) and number of twins on the overall plastic strain extracted from this analysis provide a basis to construct kinetic laws for twin evolution in terms of nucleation, growth and coalescence. Preliminary results indicate that {101¯2} v.f. evolution is dominated by twin growth in the presence of defects at room temperature, and it may not be strongly rate dependent.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2014.01.014</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2014-05, Vol.69, p.326-342
issn 1359-6454
1873-2453
language eng
recordid cdi_proquest_miscellaneous_1880036021
source Elsevier ScienceDirect Journals
subjects Applied sciences
Continuum plasticity
Crystal defects
Deformation twinning
Evolution
Exact sciences and technology
Magnesium
MD simulations
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
Micromechanics
Molecular dynamics
Orientation
Simulation
Twinning
title Micromechanics of tensile twinning in magnesium gleaned from molecular dynamics simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A20%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micromechanics%20of%20tensile%20twinning%20in%20magnesium%20gleaned%20from%20molecular%20dynamics%20simulations&rft.jtitle=Acta%20materialia&rft.au=Aghababaei,%20Ramin&rft.date=2014-05-01&rft.volume=69&rft.spage=326&rft.epage=342&rft.pages=326-342&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2014.01.014&rft_dat=%3Cproquest_cross%3E1880036021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880036021&rft_id=info:pmid/&rft_els_id=S1359645414000238&rfr_iscdi=true