RPA binds histone H3-H4 and functions in DNA replication–coupled nucleosome assembly

DNA replication-coupled nucleosome assembly is essential to maintain genome integrity and retain epigenetic information. Multiple involved histone chaperones have been identified, but how nucleosome assembly is coupled to DNA replication remains elusive. Here we show that replication protein A (RPA)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2017-01, Vol.355 (6323), p.415-420
Hauptverfasser: Liu, Shaofeng, Xu, Zhiyun, Leng, He, Zheng, Pu, Yang, Jiayi, Chen, Kaifu, Feng, Jianxun, Li, Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 420
container_issue 6323
container_start_page 415
container_title Science (American Association for the Advancement of Science)
container_volume 355
creator Liu, Shaofeng
Xu, Zhiyun
Leng, He
Zheng, Pu
Yang, Jiayi
Chen, Kaifu
Feng, Jianxun
Li, Qing
description DNA replication-coupled nucleosome assembly is essential to maintain genome integrity and retain epigenetic information. Multiple involved histone chaperones have been identified, but how nucleosome assembly is coupled to DNA replication remains elusive. Here we show that replication protein A (RPA), an essential replisome component that binds single-stranded DNA, has a role in replication-coupled nucleosome assembly. RPA directly binds free H3-H4. Assays using a synthetic sequence that mimics freshly unwound single-stranded DNA at replication fork showed that RPA promotes DNA-(H3-H4) complex formation immediately adjacent to double-stranded DNA. Further, an RPA mutant defective in H3-H4 binding exhibited attenuated nucleosome assembly on nascent chromatin. Thus, we propose that RPA functions as a platform for targeting histone deposition to replication fork, through which RPA couples nucleosome assembly with ongoing DNA replication.
doi_str_mv 10.1126/science.aah4712
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880035613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24917982</jstor_id><sourcerecordid>24917982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-b3f410741345bedcff51933bb2c651faddaad89db60596dd92b728b8d55f084a3</originalsourceid><addsrcrecordid>eNqNkT1PHDEQhq0IFA5InQpkKU2aBY-_1i5PkHBICKKIpF35a8Wedu1jfVvQ8R_yD_kl-HSXRKKiGsnzzDsaPwh9BnIGQOV5dl2ILpwZ88BroB_QDIgWlaaE7aEZIUxWitTiAB3mvCSk9DT7iA6oKsOKwgz9_vljjm0XfcYPXV6nGPCCVQuOTfS4naJbdylm3EV8eTvHY1j1nTObt5fnPy5Nqz54HCfXh5TTELDJOQy2fzpG-63pc_i0q0fo1_dv9xeL6ubu6vpiflM5AXJdWdZyIDUHxoUN3rWtAM2YtdRJAa3x3hivtLeSCC2919TWVFnlhWiJ4oYdoa_b3NWYHqeQ183QZRf63sSQptyAUuUThAT2DrREg-IK3oFKWktBxCb1yxt0maYxlps3u5nQAnhdqPMt5caU8xjaZjV2gxmfGiDNRmSzE9nsRJaJ013uZIfg__F_zRXgZAssi7Xxf59rqLWi7BU8tqQT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1883595147</pqid></control><display><type>article</type><title>RPA binds histone H3-H4 and functions in DNA replication–coupled nucleosome assembly</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><source>MEDLINE</source><creator>Liu, Shaofeng ; Xu, Zhiyun ; Leng, He ; Zheng, Pu ; Yang, Jiayi ; Chen, Kaifu ; Feng, Jianxun ; Li, Qing</creator><creatorcontrib>Liu, Shaofeng ; Xu, Zhiyun ; Leng, He ; Zheng, Pu ; Yang, Jiayi ; Chen, Kaifu ; Feng, Jianxun ; Li, Qing</creatorcontrib><description>DNA replication-coupled nucleosome assembly is essential to maintain genome integrity and retain epigenetic information. Multiple involved histone chaperones have been identified, but how nucleosome assembly is coupled to DNA replication remains elusive. Here we show that replication protein A (RPA), an essential replisome component that binds single-stranded DNA, has a role in replication-coupled nucleosome assembly. RPA directly binds free H3-H4. Assays using a synthetic sequence that mimics freshly unwound single-stranded DNA at replication fork showed that RPA promotes DNA-(H3-H4) complex formation immediately adjacent to double-stranded DNA. Further, an RPA mutant defective in H3-H4 binding exhibited attenuated nucleosome assembly on nascent chromatin. Thus, we propose that RPA functions as a platform for targeting histone deposition to replication fork, through which RPA couples nucleosome assembly with ongoing DNA replication.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aah4712</identifier><identifier>PMID: 28126821</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Assembly ; Chaperones ; Chromatin ; Chromatin Assembly and Disassembly ; Chromatin remodeling ; Complex formation ; Couples ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA Replication ; DNA, Single-Stranded - metabolism ; Electrophoretic Mobility Shift Assay ; Epigenetics ; Genomes ; Histone Chaperones - metabolism ; Histone H3 ; Histones ; Histones - metabolism ; Nucleosomes ; Nucleosomes - metabolism ; Nucleotide sequence ; Platforms ; Protein A ; Replication ; Replication protein A ; Replication Protein A - genetics ; Replication Protein A - metabolism ; RNA Polymerase I - genetics ; RNA Polymerase I - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Single-stranded DNA ; Strands</subject><ispartof>Science (American Association for the Advancement of Science), 2017-01, Vol.355 (6323), p.415-420</ispartof><rights>Copyright © 2017 American Association for the Advancement of Science</rights><rights>Copyright © 2017, American Association for the Advancement of Science.</rights><rights>Copyright © 2017, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-b3f410741345bedcff51933bb2c651faddaad89db60596dd92b728b8d55f084a3</citedby><cites>FETCH-LOGICAL-c516t-b3f410741345bedcff51933bb2c651faddaad89db60596dd92b728b8d55f084a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24917982$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24917982$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28126821$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Shaofeng</creatorcontrib><creatorcontrib>Xu, Zhiyun</creatorcontrib><creatorcontrib>Leng, He</creatorcontrib><creatorcontrib>Zheng, Pu</creatorcontrib><creatorcontrib>Yang, Jiayi</creatorcontrib><creatorcontrib>Chen, Kaifu</creatorcontrib><creatorcontrib>Feng, Jianxun</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><title>RPA binds histone H3-H4 and functions in DNA replication–coupled nucleosome assembly</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>DNA replication-coupled nucleosome assembly is essential to maintain genome integrity and retain epigenetic information. Multiple involved histone chaperones have been identified, but how nucleosome assembly is coupled to DNA replication remains elusive. Here we show that replication protein A (RPA), an essential replisome component that binds single-stranded DNA, has a role in replication-coupled nucleosome assembly. RPA directly binds free H3-H4. Assays using a synthetic sequence that mimics freshly unwound single-stranded DNA at replication fork showed that RPA promotes DNA-(H3-H4) complex formation immediately adjacent to double-stranded DNA. Further, an RPA mutant defective in H3-H4 binding exhibited attenuated nucleosome assembly on nascent chromatin. Thus, we propose that RPA functions as a platform for targeting histone deposition to replication fork, through which RPA couples nucleosome assembly with ongoing DNA replication.</description><subject>Assembly</subject><subject>Chaperones</subject><subject>Chromatin</subject><subject>Chromatin Assembly and Disassembly</subject><subject>Chromatin remodeling</subject><subject>Complex formation</subject><subject>Couples</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA Replication</subject><subject>DNA, Single-Stranded - metabolism</subject><subject>Electrophoretic Mobility Shift Assay</subject><subject>Epigenetics</subject><subject>Genomes</subject><subject>Histone Chaperones - metabolism</subject><subject>Histone H3</subject><subject>Histones</subject><subject>Histones - metabolism</subject><subject>Nucleosomes</subject><subject>Nucleosomes - metabolism</subject><subject>Nucleotide sequence</subject><subject>Platforms</subject><subject>Protein A</subject><subject>Replication</subject><subject>Replication protein A</subject><subject>Replication Protein A - genetics</subject><subject>Replication Protein A - metabolism</subject><subject>RNA Polymerase I - genetics</subject><subject>RNA Polymerase I - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Single-stranded DNA</subject><subject>Strands</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkT1PHDEQhq0IFA5InQpkKU2aBY-_1i5PkHBICKKIpF35a8Wedu1jfVvQ8R_yD_kl-HSXRKKiGsnzzDsaPwh9BnIGQOV5dl2ILpwZ88BroB_QDIgWlaaE7aEZIUxWitTiAB3mvCSk9DT7iA6oKsOKwgz9_vljjm0XfcYPXV6nGPCCVQuOTfS4naJbdylm3EV8eTvHY1j1nTObt5fnPy5Nqz54HCfXh5TTELDJOQy2fzpG-63pc_i0q0fo1_dv9xeL6ubu6vpiflM5AXJdWdZyIDUHxoUN3rWtAM2YtdRJAa3x3hivtLeSCC2919TWVFnlhWiJ4oYdoa_b3NWYHqeQ183QZRf63sSQptyAUuUThAT2DrREg-IK3oFKWktBxCb1yxt0maYxlps3u5nQAnhdqPMt5caU8xjaZjV2gxmfGiDNRmSzE9nsRJaJ013uZIfg__F_zRXgZAssi7Xxf59rqLWi7BU8tqQT</recordid><startdate>20170127</startdate><enddate>20170127</enddate><creator>Liu, Shaofeng</creator><creator>Xu, Zhiyun</creator><creator>Leng, He</creator><creator>Zheng, Pu</creator><creator>Yang, Jiayi</creator><creator>Chen, Kaifu</creator><creator>Feng, Jianxun</creator><creator>Li, Qing</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20170127</creationdate><title>RPA binds histone H3-H4 and functions in DNA replication–coupled nucleosome assembly</title><author>Liu, Shaofeng ; Xu, Zhiyun ; Leng, He ; Zheng, Pu ; Yang, Jiayi ; Chen, Kaifu ; Feng, Jianxun ; Li, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-b3f410741345bedcff51933bb2c651faddaad89db60596dd92b728b8d55f084a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Assembly</topic><topic>Chaperones</topic><topic>Chromatin</topic><topic>Chromatin Assembly and Disassembly</topic><topic>Chromatin remodeling</topic><topic>Complex formation</topic><topic>Couples</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA Replication</topic><topic>DNA, Single-Stranded - metabolism</topic><topic>Electrophoretic Mobility Shift Assay</topic><topic>Epigenetics</topic><topic>Genomes</topic><topic>Histone Chaperones - metabolism</topic><topic>Histone H3</topic><topic>Histones</topic><topic>Histones - metabolism</topic><topic>Nucleosomes</topic><topic>Nucleosomes - metabolism</topic><topic>Nucleotide sequence</topic><topic>Platforms</topic><topic>Protein A</topic><topic>Replication</topic><topic>Replication protein A</topic><topic>Replication Protein A - genetics</topic><topic>Replication Protein A - metabolism</topic><topic>RNA Polymerase I - genetics</topic><topic>RNA Polymerase I - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Single-stranded DNA</topic><topic>Strands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Shaofeng</creatorcontrib><creatorcontrib>Xu, Zhiyun</creatorcontrib><creatorcontrib>Leng, He</creatorcontrib><creatorcontrib>Zheng, Pu</creatorcontrib><creatorcontrib>Yang, Jiayi</creatorcontrib><creatorcontrib>Chen, Kaifu</creatorcontrib><creatorcontrib>Feng, Jianxun</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Shaofeng</au><au>Xu, Zhiyun</au><au>Leng, He</au><au>Zheng, Pu</au><au>Yang, Jiayi</au><au>Chen, Kaifu</au><au>Feng, Jianxun</au><au>Li, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RPA binds histone H3-H4 and functions in DNA replication–coupled nucleosome assembly</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2017-01-27</date><risdate>2017</risdate><volume>355</volume><issue>6323</issue><spage>415</spage><epage>420</epage><pages>415-420</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>DNA replication-coupled nucleosome assembly is essential to maintain genome integrity and retain epigenetic information. Multiple involved histone chaperones have been identified, but how nucleosome assembly is coupled to DNA replication remains elusive. Here we show that replication protein A (RPA), an essential replisome component that binds single-stranded DNA, has a role in replication-coupled nucleosome assembly. RPA directly binds free H3-H4. Assays using a synthetic sequence that mimics freshly unwound single-stranded DNA at replication fork showed that RPA promotes DNA-(H3-H4) complex formation immediately adjacent to double-stranded DNA. Further, an RPA mutant defective in H3-H4 binding exhibited attenuated nucleosome assembly on nascent chromatin. Thus, we propose that RPA functions as a platform for targeting histone deposition to replication fork, through which RPA couples nucleosome assembly with ongoing DNA replication.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>28126821</pmid><doi>10.1126/science.aah4712</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2017-01, Vol.355 (6323), p.415-420
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_1880035613
source American Association for the Advancement of Science; Jstor Complete Legacy; MEDLINE
subjects Assembly
Chaperones
Chromatin
Chromatin Assembly and Disassembly
Chromatin remodeling
Complex formation
Couples
Deoxyribonucleic acid
DNA
DNA biosynthesis
DNA Replication
DNA, Single-Stranded - metabolism
Electrophoretic Mobility Shift Assay
Epigenetics
Genomes
Histone Chaperones - metabolism
Histone H3
Histones
Histones - metabolism
Nucleosomes
Nucleosomes - metabolism
Nucleotide sequence
Platforms
Protein A
Replication
Replication protein A
Replication Protein A - genetics
Replication Protein A - metabolism
RNA Polymerase I - genetics
RNA Polymerase I - metabolism
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Single-stranded DNA
Strands
title RPA binds histone H3-H4 and functions in DNA replication–coupled nucleosome assembly
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A52%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RPA%20binds%20histone%20H3-H4%20and%20functions%20in%20DNA%20replication%E2%80%93coupled%20nucleosome%20assembly&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Liu,%20Shaofeng&rft.date=2017-01-27&rft.volume=355&rft.issue=6323&rft.spage=415&rft.epage=420&rft.pages=415-420&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aah4712&rft_dat=%3Cjstor_proqu%3E24917982%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1883595147&rft_id=info:pmid/28126821&rft_jstor_id=24917982&rfr_iscdi=true