RPA binds histone H3-H4 and functions in DNA replication–coupled nucleosome assembly
DNA replication-coupled nucleosome assembly is essential to maintain genome integrity and retain epigenetic information. Multiple involved histone chaperones have been identified, but how nucleosome assembly is coupled to DNA replication remains elusive. Here we show that replication protein A (RPA)...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2017-01, Vol.355 (6323), p.415-420 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 420 |
---|---|
container_issue | 6323 |
container_start_page | 415 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 355 |
creator | Liu, Shaofeng Xu, Zhiyun Leng, He Zheng, Pu Yang, Jiayi Chen, Kaifu Feng, Jianxun Li, Qing |
description | DNA replication-coupled nucleosome assembly is essential to maintain genome integrity and retain epigenetic information. Multiple involved histone chaperones have been identified, but how nucleosome assembly is coupled to DNA replication remains elusive. Here we show that replication protein A (RPA), an essential replisome component that binds single-stranded DNA, has a role in replication-coupled nucleosome assembly. RPA directly binds free H3-H4. Assays using a synthetic sequence that mimics freshly unwound single-stranded DNA at replication fork showed that RPA promotes DNA-(H3-H4) complex formation immediately adjacent to double-stranded DNA. Further, an RPA mutant defective in H3-H4 binding exhibited attenuated nucleosome assembly on nascent chromatin. Thus, we propose that RPA functions as a platform for targeting histone deposition to replication fork, through which RPA couples nucleosome assembly with ongoing DNA replication. |
doi_str_mv | 10.1126/science.aah4712 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880035613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24917982</jstor_id><sourcerecordid>24917982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-b3f410741345bedcff51933bb2c651faddaad89db60596dd92b728b8d55f084a3</originalsourceid><addsrcrecordid>eNqNkT1PHDEQhq0IFA5InQpkKU2aBY-_1i5PkHBICKKIpF35a8Wedu1jfVvQ8R_yD_kl-HSXRKKiGsnzzDsaPwh9BnIGQOV5dl2ILpwZ88BroB_QDIgWlaaE7aEZIUxWitTiAB3mvCSk9DT7iA6oKsOKwgz9_vljjm0XfcYPXV6nGPCCVQuOTfS4naJbdylm3EV8eTvHY1j1nTObt5fnPy5Nqz54HCfXh5TTELDJOQy2fzpG-63pc_i0q0fo1_dv9xeL6ubu6vpiflM5AXJdWdZyIDUHxoUN3rWtAM2YtdRJAa3x3hivtLeSCC2919TWVFnlhWiJ4oYdoa_b3NWYHqeQ183QZRf63sSQptyAUuUThAT2DrREg-IK3oFKWktBxCb1yxt0maYxlps3u5nQAnhdqPMt5caU8xjaZjV2gxmfGiDNRmSzE9nsRJaJ013uZIfg__F_zRXgZAssi7Xxf59rqLWi7BU8tqQT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1883595147</pqid></control><display><type>article</type><title>RPA binds histone H3-H4 and functions in DNA replication–coupled nucleosome assembly</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><source>MEDLINE</source><creator>Liu, Shaofeng ; Xu, Zhiyun ; Leng, He ; Zheng, Pu ; Yang, Jiayi ; Chen, Kaifu ; Feng, Jianxun ; Li, Qing</creator><creatorcontrib>Liu, Shaofeng ; Xu, Zhiyun ; Leng, He ; Zheng, Pu ; Yang, Jiayi ; Chen, Kaifu ; Feng, Jianxun ; Li, Qing</creatorcontrib><description>DNA replication-coupled nucleosome assembly is essential to maintain genome integrity and retain epigenetic information. Multiple involved histone chaperones have been identified, but how nucleosome assembly is coupled to DNA replication remains elusive. Here we show that replication protein A (RPA), an essential replisome component that binds single-stranded DNA, has a role in replication-coupled nucleosome assembly. RPA directly binds free H3-H4. Assays using a synthetic sequence that mimics freshly unwound single-stranded DNA at replication fork showed that RPA promotes DNA-(H3-H4) complex formation immediately adjacent to double-stranded DNA. Further, an RPA mutant defective in H3-H4 binding exhibited attenuated nucleosome assembly on nascent chromatin. Thus, we propose that RPA functions as a platform for targeting histone deposition to replication fork, through which RPA couples nucleosome assembly with ongoing DNA replication.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aah4712</identifier><identifier>PMID: 28126821</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Assembly ; Chaperones ; Chromatin ; Chromatin Assembly and Disassembly ; Chromatin remodeling ; Complex formation ; Couples ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA Replication ; DNA, Single-Stranded - metabolism ; Electrophoretic Mobility Shift Assay ; Epigenetics ; Genomes ; Histone Chaperones - metabolism ; Histone H3 ; Histones ; Histones - metabolism ; Nucleosomes ; Nucleosomes - metabolism ; Nucleotide sequence ; Platforms ; Protein A ; Replication ; Replication protein A ; Replication Protein A - genetics ; Replication Protein A - metabolism ; RNA Polymerase I - genetics ; RNA Polymerase I - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Single-stranded DNA ; Strands</subject><ispartof>Science (American Association for the Advancement of Science), 2017-01, Vol.355 (6323), p.415-420</ispartof><rights>Copyright © 2017 American Association for the Advancement of Science</rights><rights>Copyright © 2017, American Association for the Advancement of Science.</rights><rights>Copyright © 2017, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-b3f410741345bedcff51933bb2c651faddaad89db60596dd92b728b8d55f084a3</citedby><cites>FETCH-LOGICAL-c516t-b3f410741345bedcff51933bb2c651faddaad89db60596dd92b728b8d55f084a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24917982$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24917982$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28126821$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Shaofeng</creatorcontrib><creatorcontrib>Xu, Zhiyun</creatorcontrib><creatorcontrib>Leng, He</creatorcontrib><creatorcontrib>Zheng, Pu</creatorcontrib><creatorcontrib>Yang, Jiayi</creatorcontrib><creatorcontrib>Chen, Kaifu</creatorcontrib><creatorcontrib>Feng, Jianxun</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><title>RPA binds histone H3-H4 and functions in DNA replication–coupled nucleosome assembly</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>DNA replication-coupled nucleosome assembly is essential to maintain genome integrity and retain epigenetic information. Multiple involved histone chaperones have been identified, but how nucleosome assembly is coupled to DNA replication remains elusive. Here we show that replication protein A (RPA), an essential replisome component that binds single-stranded DNA, has a role in replication-coupled nucleosome assembly. RPA directly binds free H3-H4. Assays using a synthetic sequence that mimics freshly unwound single-stranded DNA at replication fork showed that RPA promotes DNA-(H3-H4) complex formation immediately adjacent to double-stranded DNA. Further, an RPA mutant defective in H3-H4 binding exhibited attenuated nucleosome assembly on nascent chromatin. Thus, we propose that RPA functions as a platform for targeting histone deposition to replication fork, through which RPA couples nucleosome assembly with ongoing DNA replication.</description><subject>Assembly</subject><subject>Chaperones</subject><subject>Chromatin</subject><subject>Chromatin Assembly and Disassembly</subject><subject>Chromatin remodeling</subject><subject>Complex formation</subject><subject>Couples</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA Replication</subject><subject>DNA, Single-Stranded - metabolism</subject><subject>Electrophoretic Mobility Shift Assay</subject><subject>Epigenetics</subject><subject>Genomes</subject><subject>Histone Chaperones - metabolism</subject><subject>Histone H3</subject><subject>Histones</subject><subject>Histones - metabolism</subject><subject>Nucleosomes</subject><subject>Nucleosomes - metabolism</subject><subject>Nucleotide sequence</subject><subject>Platforms</subject><subject>Protein A</subject><subject>Replication</subject><subject>Replication protein A</subject><subject>Replication Protein A - genetics</subject><subject>Replication Protein A - metabolism</subject><subject>RNA Polymerase I - genetics</subject><subject>RNA Polymerase I - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Single-stranded DNA</subject><subject>Strands</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkT1PHDEQhq0IFA5InQpkKU2aBY-_1i5PkHBICKKIpF35a8Wedu1jfVvQ8R_yD_kl-HSXRKKiGsnzzDsaPwh9BnIGQOV5dl2ILpwZ88BroB_QDIgWlaaE7aEZIUxWitTiAB3mvCSk9DT7iA6oKsOKwgz9_vljjm0XfcYPXV6nGPCCVQuOTfS4naJbdylm3EV8eTvHY1j1nTObt5fnPy5Nqz54HCfXh5TTELDJOQy2fzpG-63pc_i0q0fo1_dv9xeL6ubu6vpiflM5AXJdWdZyIDUHxoUN3rWtAM2YtdRJAa3x3hivtLeSCC2919TWVFnlhWiJ4oYdoa_b3NWYHqeQ183QZRf63sSQptyAUuUThAT2DrREg-IK3oFKWktBxCb1yxt0maYxlps3u5nQAnhdqPMt5caU8xjaZjV2gxmfGiDNRmSzE9nsRJaJ013uZIfg__F_zRXgZAssi7Xxf59rqLWi7BU8tqQT</recordid><startdate>20170127</startdate><enddate>20170127</enddate><creator>Liu, Shaofeng</creator><creator>Xu, Zhiyun</creator><creator>Leng, He</creator><creator>Zheng, Pu</creator><creator>Yang, Jiayi</creator><creator>Chen, Kaifu</creator><creator>Feng, Jianxun</creator><creator>Li, Qing</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20170127</creationdate><title>RPA binds histone H3-H4 and functions in DNA replication–coupled nucleosome assembly</title><author>Liu, Shaofeng ; Xu, Zhiyun ; Leng, He ; Zheng, Pu ; Yang, Jiayi ; Chen, Kaifu ; Feng, Jianxun ; Li, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-b3f410741345bedcff51933bb2c651faddaad89db60596dd92b728b8d55f084a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Assembly</topic><topic>Chaperones</topic><topic>Chromatin</topic><topic>Chromatin Assembly and Disassembly</topic><topic>Chromatin remodeling</topic><topic>Complex formation</topic><topic>Couples</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA Replication</topic><topic>DNA, Single-Stranded - metabolism</topic><topic>Electrophoretic Mobility Shift Assay</topic><topic>Epigenetics</topic><topic>Genomes</topic><topic>Histone Chaperones - metabolism</topic><topic>Histone H3</topic><topic>Histones</topic><topic>Histones - metabolism</topic><topic>Nucleosomes</topic><topic>Nucleosomes - metabolism</topic><topic>Nucleotide sequence</topic><topic>Platforms</topic><topic>Protein A</topic><topic>Replication</topic><topic>Replication protein A</topic><topic>Replication Protein A - genetics</topic><topic>Replication Protein A - metabolism</topic><topic>RNA Polymerase I - genetics</topic><topic>RNA Polymerase I - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Single-stranded DNA</topic><topic>Strands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Shaofeng</creatorcontrib><creatorcontrib>Xu, Zhiyun</creatorcontrib><creatorcontrib>Leng, He</creatorcontrib><creatorcontrib>Zheng, Pu</creatorcontrib><creatorcontrib>Yang, Jiayi</creatorcontrib><creatorcontrib>Chen, Kaifu</creatorcontrib><creatorcontrib>Feng, Jianxun</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Shaofeng</au><au>Xu, Zhiyun</au><au>Leng, He</au><au>Zheng, Pu</au><au>Yang, Jiayi</au><au>Chen, Kaifu</au><au>Feng, Jianxun</au><au>Li, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RPA binds histone H3-H4 and functions in DNA replication–coupled nucleosome assembly</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2017-01-27</date><risdate>2017</risdate><volume>355</volume><issue>6323</issue><spage>415</spage><epage>420</epage><pages>415-420</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>DNA replication-coupled nucleosome assembly is essential to maintain genome integrity and retain epigenetic information. Multiple involved histone chaperones have been identified, but how nucleosome assembly is coupled to DNA replication remains elusive. Here we show that replication protein A (RPA), an essential replisome component that binds single-stranded DNA, has a role in replication-coupled nucleosome assembly. RPA directly binds free H3-H4. Assays using a synthetic sequence that mimics freshly unwound single-stranded DNA at replication fork showed that RPA promotes DNA-(H3-H4) complex formation immediately adjacent to double-stranded DNA. Further, an RPA mutant defective in H3-H4 binding exhibited attenuated nucleosome assembly on nascent chromatin. Thus, we propose that RPA functions as a platform for targeting histone deposition to replication fork, through which RPA couples nucleosome assembly with ongoing DNA replication.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>28126821</pmid><doi>10.1126/science.aah4712</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2017-01, Vol.355 (6323), p.415-420 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_1880035613 |
source | American Association for the Advancement of Science; Jstor Complete Legacy; MEDLINE |
subjects | Assembly Chaperones Chromatin Chromatin Assembly and Disassembly Chromatin remodeling Complex formation Couples Deoxyribonucleic acid DNA DNA biosynthesis DNA Replication DNA, Single-Stranded - metabolism Electrophoretic Mobility Shift Assay Epigenetics Genomes Histone Chaperones - metabolism Histone H3 Histones Histones - metabolism Nucleosomes Nucleosomes - metabolism Nucleotide sequence Platforms Protein A Replication Replication protein A Replication Protein A - genetics Replication Protein A - metabolism RNA Polymerase I - genetics RNA Polymerase I - metabolism Saccharomyces cerevisiae Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Single-stranded DNA Strands |
title | RPA binds histone H3-H4 and functions in DNA replication–coupled nucleosome assembly |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A52%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RPA%20binds%20histone%20H3-H4%20and%20functions%20in%20DNA%20replication%E2%80%93coupled%20nucleosome%20assembly&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Liu,%20Shaofeng&rft.date=2017-01-27&rft.volume=355&rft.issue=6323&rft.spage=415&rft.epage=420&rft.pages=415-420&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aah4712&rft_dat=%3Cjstor_proqu%3E24917982%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1883595147&rft_id=info:pmid/28126821&rft_jstor_id=24917982&rfr_iscdi=true |