Dielectrophoresis of graphene oxide nanostructures for hydrogen gas sensor at room temperature

Hydrogen gas sensors based on graphene oxide (GO) nanostructures have been fabricated using ac dielectrophoresis (DEP) process. The GO nanostructures synthesized by an improved Hummer's method were first characterized by atomic force microscopy, X-ray diffraction, X-ray photoelectron spectrosco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. B, Chemical Chemical, 2014-04, Vol.194, p.296-302
Hauptverfasser: Wang, Jianwei, Singh, Budhi, Park, Jin-Hyung, Rathi, Servin, Lee, In-yeal, Maeng, Sunglyul, Joh, Han-Ik, Lee, Cheol-Ho, Kim, Gil-Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 302
container_issue
container_start_page 296
container_title Sensors and actuators. B, Chemical
container_volume 194
creator Wang, Jianwei
Singh, Budhi
Park, Jin-Hyung
Rathi, Servin
Lee, In-yeal
Maeng, Sunglyul
Joh, Han-Ik
Lee, Cheol-Ho
Kim, Gil-Ho
description Hydrogen gas sensors based on graphene oxide (GO) nanostructures have been fabricated using ac dielectrophoresis (DEP) process. The GO nanostructures synthesized by an improved Hummer's method were first characterized by atomic force microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy. GO nanostructures were assembled into gold electrodes using DEP process by varying parameters such as frequency, peak-to-peak voltage (Vpp), and processing time (t). The devices were investigated by scanning electron microscopy, current-voltage measurement, and hydrogen sensing experiment at room temperature. It was found that the optimum DEP parameters that manipulates GO nanostructures in precise manner for hydrogen gas sensing were Vpp=10V, frequency=500kHz, and t=30s. The optimized device was proved to be an effective and better hydrogen gas sensor over a typical drop-dried device with a good sensing response of 5%, fast response time (
doi_str_mv 10.1016/j.snb.2013.12.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880035027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400513014810</els_id><sourcerecordid>1880035027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-6a2e30782402a0f90ba44296160f66b55df1dea2e617766c5693c1b3bc88ff953</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9g8siSc7cRJxITKp1SJBVYsxzm3rto42Ami_x5XZWY66fS8r-4eQq4Z5AyYvN3ksW9zDkzkjOcAzQmZsboSmYCqOiUzaHiZFQDlObmIcQMAhZAwI58PDrdoxuCHtQ8YXaTe0lXQwxp7pP7HdUh73fs4hsmMU0Ko9YGu913wK-zpSkcasY9pp0cavN_REXcDBn2AL8mZ1duIV39zTj6eHt8XL9ny7fl1cb_MjGjkmEnNMR1a8wK4BttAq4uCN5JJsFK2ZdlZ1mGCJKsqKU0pG2FYK1pT19Y2pZiTm2PvEPzXhHFUOxcNbre6Rz9FxeoaQJTAq4SyI2qCjzGgVUNwOx32ioE6uFQblVyqg0vFuEouU-bumMH0w7fDoKJx2BvsXEjyVOfdP-lfnpl91Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880035027</pqid></control><display><type>article</type><title>Dielectrophoresis of graphene oxide nanostructures for hydrogen gas sensor at room temperature</title><source>Access via ScienceDirect (Elsevier)</source><creator>Wang, Jianwei ; Singh, Budhi ; Park, Jin-Hyung ; Rathi, Servin ; Lee, In-yeal ; Maeng, Sunglyul ; Joh, Han-Ik ; Lee, Cheol-Ho ; Kim, Gil-Ho</creator><creatorcontrib>Wang, Jianwei ; Singh, Budhi ; Park, Jin-Hyung ; Rathi, Servin ; Lee, In-yeal ; Maeng, Sunglyul ; Joh, Han-Ik ; Lee, Cheol-Ho ; Kim, Gil-Ho</creatorcontrib><description>Hydrogen gas sensors based on graphene oxide (GO) nanostructures have been fabricated using ac dielectrophoresis (DEP) process. The GO nanostructures synthesized by an improved Hummer's method were first characterized by atomic force microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy. GO nanostructures were assembled into gold electrodes using DEP process by varying parameters such as frequency, peak-to-peak voltage (Vpp), and processing time (t). The devices were investigated by scanning electron microscopy, current-voltage measurement, and hydrogen sensing experiment at room temperature. It was found that the optimum DEP parameters that manipulates GO nanostructures in precise manner for hydrogen gas sensing were Vpp=10V, frequency=500kHz, and t=30s. The optimized device was proved to be an effective and better hydrogen gas sensor over a typical drop-dried device with a good sensing response of 5%, fast response time (&lt;90s), and fast recovery time (&lt;60s) for 100ppm hydrogen gas concentration at room temperature.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2013.12.009</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Devices ; Dielectrophoresis ; Gas sensors ; Graphene ; Graphene oxide ; Hydrogen ; Hydrogen gas sensor ; Nanostructure ; Oxides ; Parameters</subject><ispartof>Sensors and actuators. B, Chemical, 2014-04, Vol.194, p.296-302</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-6a2e30782402a0f90ba44296160f66b55df1dea2e617766c5693c1b3bc88ff953</citedby><cites>FETCH-LOGICAL-c396t-6a2e30782402a0f90ba44296160f66b55df1dea2e617766c5693c1b3bc88ff953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.snb.2013.12.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids></links><search><creatorcontrib>Wang, Jianwei</creatorcontrib><creatorcontrib>Singh, Budhi</creatorcontrib><creatorcontrib>Park, Jin-Hyung</creatorcontrib><creatorcontrib>Rathi, Servin</creatorcontrib><creatorcontrib>Lee, In-yeal</creatorcontrib><creatorcontrib>Maeng, Sunglyul</creatorcontrib><creatorcontrib>Joh, Han-Ik</creatorcontrib><creatorcontrib>Lee, Cheol-Ho</creatorcontrib><creatorcontrib>Kim, Gil-Ho</creatorcontrib><title>Dielectrophoresis of graphene oxide nanostructures for hydrogen gas sensor at room temperature</title><title>Sensors and actuators. B, Chemical</title><description>Hydrogen gas sensors based on graphene oxide (GO) nanostructures have been fabricated using ac dielectrophoresis (DEP) process. The GO nanostructures synthesized by an improved Hummer's method were first characterized by atomic force microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy. GO nanostructures were assembled into gold electrodes using DEP process by varying parameters such as frequency, peak-to-peak voltage (Vpp), and processing time (t). The devices were investigated by scanning electron microscopy, current-voltage measurement, and hydrogen sensing experiment at room temperature. It was found that the optimum DEP parameters that manipulates GO nanostructures in precise manner for hydrogen gas sensing were Vpp=10V, frequency=500kHz, and t=30s. The optimized device was proved to be an effective and better hydrogen gas sensor over a typical drop-dried device with a good sensing response of 5%, fast response time (&lt;90s), and fast recovery time (&lt;60s) for 100ppm hydrogen gas concentration at room temperature.</description><subject>Devices</subject><subject>Dielectrophoresis</subject><subject>Gas sensors</subject><subject>Graphene</subject><subject>Graphene oxide</subject><subject>Hydrogen</subject><subject>Hydrogen gas sensor</subject><subject>Nanostructure</subject><subject>Oxides</subject><subject>Parameters</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9g8siSc7cRJxITKp1SJBVYsxzm3rto42Ami_x5XZWY66fS8r-4eQq4Z5AyYvN3ksW9zDkzkjOcAzQmZsboSmYCqOiUzaHiZFQDlObmIcQMAhZAwI58PDrdoxuCHtQ8YXaTe0lXQwxp7pP7HdUh73fs4hsmMU0Ko9YGu913wK-zpSkcasY9pp0cavN_REXcDBn2AL8mZ1duIV39zTj6eHt8XL9ny7fl1cb_MjGjkmEnNMR1a8wK4BttAq4uCN5JJsFK2ZdlZ1mGCJKsqKU0pG2FYK1pT19Y2pZiTm2PvEPzXhHFUOxcNbre6Rz9FxeoaQJTAq4SyI2qCjzGgVUNwOx32ioE6uFQblVyqg0vFuEouU-bumMH0w7fDoKJx2BvsXEjyVOfdP-lfnpl91Q</recordid><startdate>201404</startdate><enddate>201404</enddate><creator>Wang, Jianwei</creator><creator>Singh, Budhi</creator><creator>Park, Jin-Hyung</creator><creator>Rathi, Servin</creator><creator>Lee, In-yeal</creator><creator>Maeng, Sunglyul</creator><creator>Joh, Han-Ik</creator><creator>Lee, Cheol-Ho</creator><creator>Kim, Gil-Ho</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201404</creationdate><title>Dielectrophoresis of graphene oxide nanostructures for hydrogen gas sensor at room temperature</title><author>Wang, Jianwei ; Singh, Budhi ; Park, Jin-Hyung ; Rathi, Servin ; Lee, In-yeal ; Maeng, Sunglyul ; Joh, Han-Ik ; Lee, Cheol-Ho ; Kim, Gil-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-6a2e30782402a0f90ba44296160f66b55df1dea2e617766c5693c1b3bc88ff953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Devices</topic><topic>Dielectrophoresis</topic><topic>Gas sensors</topic><topic>Graphene</topic><topic>Graphene oxide</topic><topic>Hydrogen</topic><topic>Hydrogen gas sensor</topic><topic>Nanostructure</topic><topic>Oxides</topic><topic>Parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jianwei</creatorcontrib><creatorcontrib>Singh, Budhi</creatorcontrib><creatorcontrib>Park, Jin-Hyung</creatorcontrib><creatorcontrib>Rathi, Servin</creatorcontrib><creatorcontrib>Lee, In-yeal</creatorcontrib><creatorcontrib>Maeng, Sunglyul</creatorcontrib><creatorcontrib>Joh, Han-Ik</creatorcontrib><creatorcontrib>Lee, Cheol-Ho</creatorcontrib><creatorcontrib>Kim, Gil-Ho</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jianwei</au><au>Singh, Budhi</au><au>Park, Jin-Hyung</au><au>Rathi, Servin</au><au>Lee, In-yeal</au><au>Maeng, Sunglyul</au><au>Joh, Han-Ik</au><au>Lee, Cheol-Ho</au><au>Kim, Gil-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dielectrophoresis of graphene oxide nanostructures for hydrogen gas sensor at room temperature</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2014-04</date><risdate>2014</risdate><volume>194</volume><spage>296</spage><epage>302</epage><pages>296-302</pages><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>Hydrogen gas sensors based on graphene oxide (GO) nanostructures have been fabricated using ac dielectrophoresis (DEP) process. The GO nanostructures synthesized by an improved Hummer's method were first characterized by atomic force microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy. GO nanostructures were assembled into gold electrodes using DEP process by varying parameters such as frequency, peak-to-peak voltage (Vpp), and processing time (t). The devices were investigated by scanning electron microscopy, current-voltage measurement, and hydrogen sensing experiment at room temperature. It was found that the optimum DEP parameters that manipulates GO nanostructures in precise manner for hydrogen gas sensing were Vpp=10V, frequency=500kHz, and t=30s. The optimized device was proved to be an effective and better hydrogen gas sensor over a typical drop-dried device with a good sensing response of 5%, fast response time (&lt;90s), and fast recovery time (&lt;60s) for 100ppm hydrogen gas concentration at room temperature.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2013.12.009</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-4005
ispartof Sensors and actuators. B, Chemical, 2014-04, Vol.194, p.296-302
issn 0925-4005
1873-3077
language eng
recordid cdi_proquest_miscellaneous_1880035027
source Access via ScienceDirect (Elsevier)
subjects Devices
Dielectrophoresis
Gas sensors
Graphene
Graphene oxide
Hydrogen
Hydrogen gas sensor
Nanostructure
Oxides
Parameters
title Dielectrophoresis of graphene oxide nanostructures for hydrogen gas sensor at room temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T13%3A17%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dielectrophoresis%20of%20graphene%20oxide%20nanostructures%20for%20hydrogen%20gas%20sensor%20at%20room%20temperature&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Wang,%20Jianwei&rft.date=2014-04&rft.volume=194&rft.spage=296&rft.epage=302&rft.pages=296-302&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2013.12.009&rft_dat=%3Cproquest_cross%3E1880035027%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880035027&rft_id=info:pmid/&rft_els_id=S0925400513014810&rfr_iscdi=true