Dielectrophoresis of graphene oxide nanostructures for hydrogen gas sensor at room temperature
Hydrogen gas sensors based on graphene oxide (GO) nanostructures have been fabricated using ac dielectrophoresis (DEP) process. The GO nanostructures synthesized by an improved Hummer's method were first characterized by atomic force microscopy, X-ray diffraction, X-ray photoelectron spectrosco...
Gespeichert in:
Veröffentlicht in: | Sensors and actuators. B, Chemical Chemical, 2014-04, Vol.194, p.296-302 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 302 |
---|---|
container_issue | |
container_start_page | 296 |
container_title | Sensors and actuators. B, Chemical |
container_volume | 194 |
creator | Wang, Jianwei Singh, Budhi Park, Jin-Hyung Rathi, Servin Lee, In-yeal Maeng, Sunglyul Joh, Han-Ik Lee, Cheol-Ho Kim, Gil-Ho |
description | Hydrogen gas sensors based on graphene oxide (GO) nanostructures have been fabricated using ac dielectrophoresis (DEP) process. The GO nanostructures synthesized by an improved Hummer's method were first characterized by atomic force microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy. GO nanostructures were assembled into gold electrodes using DEP process by varying parameters such as frequency, peak-to-peak voltage (Vpp), and processing time (t). The devices were investigated by scanning electron microscopy, current-voltage measurement, and hydrogen sensing experiment at room temperature. It was found that the optimum DEP parameters that manipulates GO nanostructures in precise manner for hydrogen gas sensing were Vpp=10V, frequency=500kHz, and t=30s. The optimized device was proved to be an effective and better hydrogen gas sensor over a typical drop-dried device with a good sensing response of 5%, fast response time ( |
doi_str_mv | 10.1016/j.snb.2013.12.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880035027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400513014810</els_id><sourcerecordid>1880035027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-6a2e30782402a0f90ba44296160f66b55df1dea2e617766c5693c1b3bc88ff953</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9g8siSc7cRJxITKp1SJBVYsxzm3rto42Ami_x5XZWY66fS8r-4eQq4Z5AyYvN3ksW9zDkzkjOcAzQmZsboSmYCqOiUzaHiZFQDlObmIcQMAhZAwI58PDrdoxuCHtQ8YXaTe0lXQwxp7pP7HdUh73fs4hsmMU0Ko9YGu913wK-zpSkcasY9pp0cavN_REXcDBn2AL8mZ1duIV39zTj6eHt8XL9ny7fl1cb_MjGjkmEnNMR1a8wK4BttAq4uCN5JJsFK2ZdlZ1mGCJKsqKU0pG2FYK1pT19Y2pZiTm2PvEPzXhHFUOxcNbre6Rz9FxeoaQJTAq4SyI2qCjzGgVUNwOx32ioE6uFQblVyqg0vFuEouU-bumMH0w7fDoKJx2BvsXEjyVOfdP-lfnpl91Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880035027</pqid></control><display><type>article</type><title>Dielectrophoresis of graphene oxide nanostructures for hydrogen gas sensor at room temperature</title><source>Access via ScienceDirect (Elsevier)</source><creator>Wang, Jianwei ; Singh, Budhi ; Park, Jin-Hyung ; Rathi, Servin ; Lee, In-yeal ; Maeng, Sunglyul ; Joh, Han-Ik ; Lee, Cheol-Ho ; Kim, Gil-Ho</creator><creatorcontrib>Wang, Jianwei ; Singh, Budhi ; Park, Jin-Hyung ; Rathi, Servin ; Lee, In-yeal ; Maeng, Sunglyul ; Joh, Han-Ik ; Lee, Cheol-Ho ; Kim, Gil-Ho</creatorcontrib><description>Hydrogen gas sensors based on graphene oxide (GO) nanostructures have been fabricated using ac dielectrophoresis (DEP) process. The GO nanostructures synthesized by an improved Hummer's method were first characterized by atomic force microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy. GO nanostructures were assembled into gold electrodes using DEP process by varying parameters such as frequency, peak-to-peak voltage (Vpp), and processing time (t). The devices were investigated by scanning electron microscopy, current-voltage measurement, and hydrogen sensing experiment at room temperature. It was found that the optimum DEP parameters that manipulates GO nanostructures in precise manner for hydrogen gas sensing were Vpp=10V, frequency=500kHz, and t=30s. The optimized device was proved to be an effective and better hydrogen gas sensor over a typical drop-dried device with a good sensing response of 5%, fast response time (<90s), and fast recovery time (<60s) for 100ppm hydrogen gas concentration at room temperature.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2013.12.009</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Devices ; Dielectrophoresis ; Gas sensors ; Graphene ; Graphene oxide ; Hydrogen ; Hydrogen gas sensor ; Nanostructure ; Oxides ; Parameters</subject><ispartof>Sensors and actuators. B, Chemical, 2014-04, Vol.194, p.296-302</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-6a2e30782402a0f90ba44296160f66b55df1dea2e617766c5693c1b3bc88ff953</citedby><cites>FETCH-LOGICAL-c396t-6a2e30782402a0f90ba44296160f66b55df1dea2e617766c5693c1b3bc88ff953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.snb.2013.12.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids></links><search><creatorcontrib>Wang, Jianwei</creatorcontrib><creatorcontrib>Singh, Budhi</creatorcontrib><creatorcontrib>Park, Jin-Hyung</creatorcontrib><creatorcontrib>Rathi, Servin</creatorcontrib><creatorcontrib>Lee, In-yeal</creatorcontrib><creatorcontrib>Maeng, Sunglyul</creatorcontrib><creatorcontrib>Joh, Han-Ik</creatorcontrib><creatorcontrib>Lee, Cheol-Ho</creatorcontrib><creatorcontrib>Kim, Gil-Ho</creatorcontrib><title>Dielectrophoresis of graphene oxide nanostructures for hydrogen gas sensor at room temperature</title><title>Sensors and actuators. B, Chemical</title><description>Hydrogen gas sensors based on graphene oxide (GO) nanostructures have been fabricated using ac dielectrophoresis (DEP) process. The GO nanostructures synthesized by an improved Hummer's method were first characterized by atomic force microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy. GO nanostructures were assembled into gold electrodes using DEP process by varying parameters such as frequency, peak-to-peak voltage (Vpp), and processing time (t). The devices were investigated by scanning electron microscopy, current-voltage measurement, and hydrogen sensing experiment at room temperature. It was found that the optimum DEP parameters that manipulates GO nanostructures in precise manner for hydrogen gas sensing were Vpp=10V, frequency=500kHz, and t=30s. The optimized device was proved to be an effective and better hydrogen gas sensor over a typical drop-dried device with a good sensing response of 5%, fast response time (<90s), and fast recovery time (<60s) for 100ppm hydrogen gas concentration at room temperature.</description><subject>Devices</subject><subject>Dielectrophoresis</subject><subject>Gas sensors</subject><subject>Graphene</subject><subject>Graphene oxide</subject><subject>Hydrogen</subject><subject>Hydrogen gas sensor</subject><subject>Nanostructure</subject><subject>Oxides</subject><subject>Parameters</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9g8siSc7cRJxITKp1SJBVYsxzm3rto42Ami_x5XZWY66fS8r-4eQq4Z5AyYvN3ksW9zDkzkjOcAzQmZsboSmYCqOiUzaHiZFQDlObmIcQMAhZAwI58PDrdoxuCHtQ8YXaTe0lXQwxp7pP7HdUh73fs4hsmMU0Ko9YGu913wK-zpSkcasY9pp0cavN_REXcDBn2AL8mZ1duIV39zTj6eHt8XL9ny7fl1cb_MjGjkmEnNMR1a8wK4BttAq4uCN5JJsFK2ZdlZ1mGCJKsqKU0pG2FYK1pT19Y2pZiTm2PvEPzXhHFUOxcNbre6Rz9FxeoaQJTAq4SyI2qCjzGgVUNwOx32ioE6uFQblVyqg0vFuEouU-bumMH0w7fDoKJx2BvsXEjyVOfdP-lfnpl91Q</recordid><startdate>201404</startdate><enddate>201404</enddate><creator>Wang, Jianwei</creator><creator>Singh, Budhi</creator><creator>Park, Jin-Hyung</creator><creator>Rathi, Servin</creator><creator>Lee, In-yeal</creator><creator>Maeng, Sunglyul</creator><creator>Joh, Han-Ik</creator><creator>Lee, Cheol-Ho</creator><creator>Kim, Gil-Ho</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201404</creationdate><title>Dielectrophoresis of graphene oxide nanostructures for hydrogen gas sensor at room temperature</title><author>Wang, Jianwei ; Singh, Budhi ; Park, Jin-Hyung ; Rathi, Servin ; Lee, In-yeal ; Maeng, Sunglyul ; Joh, Han-Ik ; Lee, Cheol-Ho ; Kim, Gil-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-6a2e30782402a0f90ba44296160f66b55df1dea2e617766c5693c1b3bc88ff953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Devices</topic><topic>Dielectrophoresis</topic><topic>Gas sensors</topic><topic>Graphene</topic><topic>Graphene oxide</topic><topic>Hydrogen</topic><topic>Hydrogen gas sensor</topic><topic>Nanostructure</topic><topic>Oxides</topic><topic>Parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jianwei</creatorcontrib><creatorcontrib>Singh, Budhi</creatorcontrib><creatorcontrib>Park, Jin-Hyung</creatorcontrib><creatorcontrib>Rathi, Servin</creatorcontrib><creatorcontrib>Lee, In-yeal</creatorcontrib><creatorcontrib>Maeng, Sunglyul</creatorcontrib><creatorcontrib>Joh, Han-Ik</creatorcontrib><creatorcontrib>Lee, Cheol-Ho</creatorcontrib><creatorcontrib>Kim, Gil-Ho</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jianwei</au><au>Singh, Budhi</au><au>Park, Jin-Hyung</au><au>Rathi, Servin</au><au>Lee, In-yeal</au><au>Maeng, Sunglyul</au><au>Joh, Han-Ik</au><au>Lee, Cheol-Ho</au><au>Kim, Gil-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dielectrophoresis of graphene oxide nanostructures for hydrogen gas sensor at room temperature</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2014-04</date><risdate>2014</risdate><volume>194</volume><spage>296</spage><epage>302</epage><pages>296-302</pages><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>Hydrogen gas sensors based on graphene oxide (GO) nanostructures have been fabricated using ac dielectrophoresis (DEP) process. The GO nanostructures synthesized by an improved Hummer's method were first characterized by atomic force microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy. GO nanostructures were assembled into gold electrodes using DEP process by varying parameters such as frequency, peak-to-peak voltage (Vpp), and processing time (t). The devices were investigated by scanning electron microscopy, current-voltage measurement, and hydrogen sensing experiment at room temperature. It was found that the optimum DEP parameters that manipulates GO nanostructures in precise manner for hydrogen gas sensing were Vpp=10V, frequency=500kHz, and t=30s. The optimized device was proved to be an effective and better hydrogen gas sensor over a typical drop-dried device with a good sensing response of 5%, fast response time (<90s), and fast recovery time (<60s) for 100ppm hydrogen gas concentration at room temperature.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2013.12.009</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-4005 |
ispartof | Sensors and actuators. B, Chemical, 2014-04, Vol.194, p.296-302 |
issn | 0925-4005 1873-3077 |
language | eng |
recordid | cdi_proquest_miscellaneous_1880035027 |
source | Access via ScienceDirect (Elsevier) |
subjects | Devices Dielectrophoresis Gas sensors Graphene Graphene oxide Hydrogen Hydrogen gas sensor Nanostructure Oxides Parameters |
title | Dielectrophoresis of graphene oxide nanostructures for hydrogen gas sensor at room temperature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T13%3A17%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dielectrophoresis%20of%20graphene%20oxide%20nanostructures%20for%20hydrogen%20gas%20sensor%20at%20room%20temperature&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Wang,%20Jianwei&rft.date=2014-04&rft.volume=194&rft.spage=296&rft.epage=302&rft.pages=296-302&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2013.12.009&rft_dat=%3Cproquest_cross%3E1880035027%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880035027&rft_id=info:pmid/&rft_els_id=S0925400513014810&rfr_iscdi=true |