A light addressable electrode with a TiO2 nanocrystalline film for localized electrical stimulation of cultured neurons

To improve the existing light-addressable electrode (LAE) for neuronal stimulation, we attempted to replace a photoconductive layer of hydrogenated amorphous silicon (a-Si:H), which is subject to corrosion in cell culture environments, with a TiO2 nanocrystalline film. As seen in previous LAEs with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. B, Chemical Chemical, 2014-03, Vol.192, p.393-398
Hauptverfasser: Suzurikawa, Jun, Nakao, Masayuki, Jimbo, Yasuhiko, Kanzaki, Ryohei, Takahashi, Hirokazu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 398
container_issue
container_start_page 393
container_title Sensors and actuators. B, Chemical
container_volume 192
creator Suzurikawa, Jun
Nakao, Masayuki
Jimbo, Yasuhiko
Kanzaki, Ryohei
Takahashi, Hirokazu
description To improve the existing light-addressable electrode (LAE) for neuronal stimulation, we attempted to replace a photoconductive layer of hydrogenated amorphous silicon (a-Si:H), which is subject to corrosion in cell culture environments, with a TiO2 nanocrystalline film. As seen in previous LAEs with a-Si:H, the TiO2 film formed on a metal film electrode serves as a photo-switch: UV light illumination locally increases the conductivity of the TiO2 film and generates a virtual electrode. TiO2 is a lower cost material, easier to fabricate than a-Si:H, and more compatible with cell culture environments; thus, it does not require a passivation layer on top. The measurements of photoelectric characteristics of TiO2 LAE ascertained that adequate photo-switching properties for selective neuronal stimulation were achieved; however, two possible issues that could affect performance were identified: degradation of the photo-switching property due to electrolyte penetration into the TiO2 film and a slow switching response due to charge carrier trapping into surface defects. Despite these issues, however, the feasibility of light-addressed electrical stimulation with the proposed TiO2 LAE was successfully demonstrated in an experiment using a primary neuron-glia co-culture. Thus, TiO2 is an alternative candidate to a-Si:H in photo-electrochemical biointerfaces.
doi_str_mv 10.1016/j.snb.2013.10.139
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880034982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400513013415</els_id><sourcerecordid>1880034982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-87d8e2bf5b2f5426fe6b53ab0bdf475d0a76a4895569ad55ad7905cb0e7b3f443</originalsourceid><addsrcrecordid>eNqNkU9PHDEMxaOKSl1oP0BvOXKZrTOZTGbECSFKKyFxgXOUP07JKpvQJAOin76zXc4VJ8tPv2fZfoR8ZbBlwMZvu21NZtsD49uDxOcPZMMmyTsOUp6QDcy96AYA8Ymc1roDgIGPsCEvlzSGX4-NaucK1qpNRIoRbSvZIX0J7ZFqeh_uepp0yra81qZjDAmpD3FPfS40Zqtj-IPuzRjWltYW9kvULeREs6d2iW0pK5JwKTnVz-Sj17Hil7d6Rh6-X99f_ehu725-Xl3ednZdtnWTdBP2xgvTezH0o8fRCK4NGOcHKRxoOephmoUYZ-2E0E7OIKwBlIb7YeBn5Pw496nk3wvWpvahWoxRJ8xLVWyaAPgwT_070HHibJTsgLIjakuutaBXTyXsdXlVDNQhD7VTax7qkMc_ic-r5-LowfXc54BFVRswWXShrF9TLof_uP8C77mVEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1868316712</pqid></control><display><type>article</type><title>A light addressable electrode with a TiO2 nanocrystalline film for localized electrical stimulation of cultured neurons</title><source>Elsevier ScienceDirect Journals</source><creator>Suzurikawa, Jun ; Nakao, Masayuki ; Jimbo, Yasuhiko ; Kanzaki, Ryohei ; Takahashi, Hirokazu</creator><creatorcontrib>Suzurikawa, Jun ; Nakao, Masayuki ; Jimbo, Yasuhiko ; Kanzaki, Ryohei ; Takahashi, Hirokazu</creatorcontrib><description>To improve the existing light-addressable electrode (LAE) for neuronal stimulation, we attempted to replace a photoconductive layer of hydrogenated amorphous silicon (a-Si:H), which is subject to corrosion in cell culture environments, with a TiO2 nanocrystalline film. As seen in previous LAEs with a-Si:H, the TiO2 film formed on a metal film electrode serves as a photo-switch: UV light illumination locally increases the conductivity of the TiO2 film and generates a virtual electrode. TiO2 is a lower cost material, easier to fabricate than a-Si:H, and more compatible with cell culture environments; thus, it does not require a passivation layer on top. The measurements of photoelectric characteristics of TiO2 LAE ascertained that adequate photo-switching properties for selective neuronal stimulation were achieved; however, two possible issues that could affect performance were identified: degradation of the photo-switching property due to electrolyte penetration into the TiO2 film and a slow switching response due to charge carrier trapping into surface defects. Despite these issues, however, the feasibility of light-addressed electrical stimulation with the proposed TiO2 LAE was successfully demonstrated in an experiment using a primary neuron-glia co-culture. Thus, TiO2 is an alternative candidate to a-Si:H in photo-electrochemical biointerfaces.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2013.10.139</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Biomaterials ; Biotechnology ; Electrical stimulation ; Electrodes ; Illumination ; LAPS ; Light-addressable electrode ; Nanocrystals ; Neuron ; Stimulation ; TiO2 ; Titanium dioxide ; Trapping</subject><ispartof>Sensors and actuators. B, Chemical, 2014-03, Vol.192, p.393-398</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-87d8e2bf5b2f5426fe6b53ab0bdf475d0a76a4895569ad55ad7905cb0e7b3f443</citedby><cites>FETCH-LOGICAL-c400t-87d8e2bf5b2f5426fe6b53ab0bdf475d0a76a4895569ad55ad7905cb0e7b3f443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925400513013415$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Suzurikawa, Jun</creatorcontrib><creatorcontrib>Nakao, Masayuki</creatorcontrib><creatorcontrib>Jimbo, Yasuhiko</creatorcontrib><creatorcontrib>Kanzaki, Ryohei</creatorcontrib><creatorcontrib>Takahashi, Hirokazu</creatorcontrib><title>A light addressable electrode with a TiO2 nanocrystalline film for localized electrical stimulation of cultured neurons</title><title>Sensors and actuators. B, Chemical</title><description>To improve the existing light-addressable electrode (LAE) for neuronal stimulation, we attempted to replace a photoconductive layer of hydrogenated amorphous silicon (a-Si:H), which is subject to corrosion in cell culture environments, with a TiO2 nanocrystalline film. As seen in previous LAEs with a-Si:H, the TiO2 film formed on a metal film electrode serves as a photo-switch: UV light illumination locally increases the conductivity of the TiO2 film and generates a virtual electrode. TiO2 is a lower cost material, easier to fabricate than a-Si:H, and more compatible with cell culture environments; thus, it does not require a passivation layer on top. The measurements of photoelectric characteristics of TiO2 LAE ascertained that adequate photo-switching properties for selective neuronal stimulation were achieved; however, two possible issues that could affect performance were identified: degradation of the photo-switching property due to electrolyte penetration into the TiO2 film and a slow switching response due to charge carrier trapping into surface defects. Despite these issues, however, the feasibility of light-addressed electrical stimulation with the proposed TiO2 LAE was successfully demonstrated in an experiment using a primary neuron-glia co-culture. Thus, TiO2 is an alternative candidate to a-Si:H in photo-electrochemical biointerfaces.</description><subject>Biomaterials</subject><subject>Biotechnology</subject><subject>Electrical stimulation</subject><subject>Electrodes</subject><subject>Illumination</subject><subject>LAPS</subject><subject>Light-addressable electrode</subject><subject>Nanocrystals</subject><subject>Neuron</subject><subject>Stimulation</subject><subject>TiO2</subject><subject>Titanium dioxide</subject><subject>Trapping</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkU9PHDEMxaOKSl1oP0BvOXKZrTOZTGbECSFKKyFxgXOUP07JKpvQJAOin76zXc4VJ8tPv2fZfoR8ZbBlwMZvu21NZtsD49uDxOcPZMMmyTsOUp6QDcy96AYA8Ymc1roDgIGPsCEvlzSGX4-NaucK1qpNRIoRbSvZIX0J7ZFqeh_uepp0yra81qZjDAmpD3FPfS40Zqtj-IPuzRjWltYW9kvULeREs6d2iW0pK5JwKTnVz-Sj17Hil7d6Rh6-X99f_ehu725-Xl3ednZdtnWTdBP2xgvTezH0o8fRCK4NGOcHKRxoOephmoUYZ-2E0E7OIKwBlIb7YeBn5Pw496nk3wvWpvahWoxRJ8xLVWyaAPgwT_070HHibJTsgLIjakuutaBXTyXsdXlVDNQhD7VTax7qkMc_ic-r5-LowfXc54BFVRswWXShrF9TLof_uP8C77mVEw</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Suzurikawa, Jun</creator><creator>Nakao, Masayuki</creator><creator>Jimbo, Yasuhiko</creator><creator>Kanzaki, Ryohei</creator><creator>Takahashi, Hirokazu</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140301</creationdate><title>A light addressable electrode with a TiO2 nanocrystalline film for localized electrical stimulation of cultured neurons</title><author>Suzurikawa, Jun ; Nakao, Masayuki ; Jimbo, Yasuhiko ; Kanzaki, Ryohei ; Takahashi, Hirokazu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-87d8e2bf5b2f5426fe6b53ab0bdf475d0a76a4895569ad55ad7905cb0e7b3f443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biomaterials</topic><topic>Biotechnology</topic><topic>Electrical stimulation</topic><topic>Electrodes</topic><topic>Illumination</topic><topic>LAPS</topic><topic>Light-addressable electrode</topic><topic>Nanocrystals</topic><topic>Neuron</topic><topic>Stimulation</topic><topic>TiO2</topic><topic>Titanium dioxide</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suzurikawa, Jun</creatorcontrib><creatorcontrib>Nakao, Masayuki</creatorcontrib><creatorcontrib>Jimbo, Yasuhiko</creatorcontrib><creatorcontrib>Kanzaki, Ryohei</creatorcontrib><creatorcontrib>Takahashi, Hirokazu</creatorcontrib><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suzurikawa, Jun</au><au>Nakao, Masayuki</au><au>Jimbo, Yasuhiko</au><au>Kanzaki, Ryohei</au><au>Takahashi, Hirokazu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A light addressable electrode with a TiO2 nanocrystalline film for localized electrical stimulation of cultured neurons</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>192</volume><spage>393</spage><epage>398</epage><pages>393-398</pages><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>To improve the existing light-addressable electrode (LAE) for neuronal stimulation, we attempted to replace a photoconductive layer of hydrogenated amorphous silicon (a-Si:H), which is subject to corrosion in cell culture environments, with a TiO2 nanocrystalline film. As seen in previous LAEs with a-Si:H, the TiO2 film formed on a metal film electrode serves as a photo-switch: UV light illumination locally increases the conductivity of the TiO2 film and generates a virtual electrode. TiO2 is a lower cost material, easier to fabricate than a-Si:H, and more compatible with cell culture environments; thus, it does not require a passivation layer on top. The measurements of photoelectric characteristics of TiO2 LAE ascertained that adequate photo-switching properties for selective neuronal stimulation were achieved; however, two possible issues that could affect performance were identified: degradation of the photo-switching property due to electrolyte penetration into the TiO2 film and a slow switching response due to charge carrier trapping into surface defects. Despite these issues, however, the feasibility of light-addressed electrical stimulation with the proposed TiO2 LAE was successfully demonstrated in an experiment using a primary neuron-glia co-culture. Thus, TiO2 is an alternative candidate to a-Si:H in photo-electrochemical biointerfaces.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2013.10.139</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-4005
ispartof Sensors and actuators. B, Chemical, 2014-03, Vol.192, p.393-398
issn 0925-4005
1873-3077
language eng
recordid cdi_proquest_miscellaneous_1880034982
source Elsevier ScienceDirect Journals
subjects Biomaterials
Biotechnology
Electrical stimulation
Electrodes
Illumination
LAPS
Light-addressable electrode
Nanocrystals
Neuron
Stimulation
TiO2
Titanium dioxide
Trapping
title A light addressable electrode with a TiO2 nanocrystalline film for localized electrical stimulation of cultured neurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A21%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20light%20addressable%20electrode%20with%20a%20TiO2%20nanocrystalline%20film%20for%20localized%20electrical%20stimulation%20of%20cultured%20neurons&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Suzurikawa,%20Jun&rft.date=2014-03-01&rft.volume=192&rft.spage=393&rft.epage=398&rft.pages=393-398&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2013.10.139&rft_dat=%3Cproquest_cross%3E1880034982%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1868316712&rft_id=info:pmid/&rft_els_id=S0925400513013415&rfr_iscdi=true