Tip-splitting instability and transition to seaweed growth during alloy solidification in anisotropically preferred growth direction

The evolution of the solid–liquid interface morphology during the initial transient of directional solidification is investigated by quantitative phase-field numerical simulation during cooling down of an Al–4wt.% Cu alloy growing in the preferred 〈100〉-direction. Simulations show that the shape of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2014-03, Vol.66, p.219-231
Hauptverfasser: Chen, Yun, Billia, Bernard, Li, Dian Zhong, Nguyen-Thi, Henri, Xiao, Na Min, Bogno, Abdoul-Aziz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 231
container_issue
container_start_page 219
container_title Acta materialia
container_volume 66
creator Chen, Yun
Billia, Bernard
Li, Dian Zhong
Nguyen-Thi, Henri
Xiao, Na Min
Bogno, Abdoul-Aziz
description The evolution of the solid–liquid interface morphology during the initial transient of directional solidification is investigated by quantitative phase-field numerical simulation during cooling down of an Al–4wt.% Cu alloy growing in the preferred 〈100〉-direction. Simulations show that the shape of the non-planar solid–liquid interface varies with the instantaneous growth parameters; in particular, above a critical value of tip velocity, cell/dendrite tips undergo Mullins–Sekerka morphological instability resulting in tip splitting and transition from cells or dendrites to seaweeds. The numerical simulations demonstrate that, despite the 〈100〉-direction corresponding to high solid–liquid interface energy, seaweed formation is predicted when noise, either inherent to the numerical mesh and/or intentionally added to the phase field, is strong enough to blur the solid anisotropy at the cell/dendrite tip, which confirms the analytical predictions of Brener et al. (1996). Both the tip-splitting mechanism responsible for the seaweed morphological transition as well as the seaweed growth dynamics are characterized. The numerical predictions are then compared to the seaweed transition evidenced on an Al–4wt.% Cu alloy by in situ and real-time synchrotron X-ray radiography in the initial transient of directional solidification, and good agreement is found.
doi_str_mv 10.1016/j.actamat.2013.11.069
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880034951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645413009270</els_id><sourcerecordid>1880034951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-48ab6781e47c4026968251a917c7f3974edfef2655857b6e3ed9c9c3c540a5783</originalsourceid><addsrcrecordid>eNqFkE2LFDEQhhtxwXXXnyDkInjpNt9Jn0QWV4UFL-s5ZNLVaw2ZTptkXOa-P3wzziDePCUpnjdV9XTdW0YHRpn-sB18qH7n68ApEwNjA9Xji-6SWSN6LpV42e5Cjb2WSr7qXpeypZRxI-ll93SPa1_WiLXi8kBwKdVvsD0PxC8TqdkvBSumhdRECvhHgIk85PRYf5Jpn48ZH2M6kJIiTjhj8H9oXFoeS6o5ra0W44GsGWbI-Z88ZghH-rq7mH0s8OZ8XnU_bj_f33zt775_-Xbz6a4PUtjaS-s32lgG0gRJuR615Yr5kZlgZjEaCdMMM9dKWWU2GgRMYxiDCEpSr4wVV937079rTr_2UKrbYQkQo18g7Ytj1lIq5KhYQ9UJDTmV0iZ3a8adzwfHqDtad1t3tu6O1h1jrllvuXfnFr60tefmL2D5G-aWj1xZ3biPJw7avr8RsisBYQlwkuKmhP_p9AyvhZ5_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880034951</pqid></control><display><type>article</type><title>Tip-splitting instability and transition to seaweed growth during alloy solidification in anisotropically preferred growth direction</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Chen, Yun ; Billia, Bernard ; Li, Dian Zhong ; Nguyen-Thi, Henri ; Xiao, Na Min ; Bogno, Abdoul-Aziz</creator><creatorcontrib>Chen, Yun ; Billia, Bernard ; Li, Dian Zhong ; Nguyen-Thi, Henri ; Xiao, Na Min ; Bogno, Abdoul-Aziz</creatorcontrib><description>The evolution of the solid–liquid interface morphology during the initial transient of directional solidification is investigated by quantitative phase-field numerical simulation during cooling down of an Al–4wt.% Cu alloy growing in the preferred 〈100〉-direction. Simulations show that the shape of the non-planar solid–liquid interface varies with the instantaneous growth parameters; in particular, above a critical value of tip velocity, cell/dendrite tips undergo Mullins–Sekerka morphological instability resulting in tip splitting and transition from cells or dendrites to seaweeds. The numerical simulations demonstrate that, despite the 〈100〉-direction corresponding to high solid–liquid interface energy, seaweed formation is predicted when noise, either inherent to the numerical mesh and/or intentionally added to the phase field, is strong enough to blur the solid anisotropy at the cell/dendrite tip, which confirms the analytical predictions of Brener et al. (1996). Both the tip-splitting mechanism responsible for the seaweed morphological transition as well as the seaweed growth dynamics are characterized. The numerical predictions are then compared to the seaweed transition evidenced on an Al–4wt.% Cu alloy by in situ and real-time synchrotron X-ray radiography in the initial transient of directional solidification, and good agreement is found.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2013.11.069</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alloy directional solidification ; Aluminum base alloys ; Anisotropy ; Applied sciences ; Computer simulation ; Copper ; Dendritic structure ; Exact sciences and technology ; Mathematical models ; Metals. Metallurgy ; Noise ; Noise prediction ; Numerical prediction ; Phase-field ; Seaweed ; Seaweeds ; Tip splitting</subject><ispartof>Acta materialia, 2014-03, Vol.66, p.219-231</ispartof><rights>2013 Acta Materialia Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-48ab6781e47c4026968251a917c7f3974edfef2655857b6e3ed9c9c3c540a5783</citedby><cites>FETCH-LOGICAL-c438t-48ab6781e47c4026968251a917c7f3974edfef2655857b6e3ed9c9c3c540a5783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actamat.2013.11.069$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28292586$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Yun</creatorcontrib><creatorcontrib>Billia, Bernard</creatorcontrib><creatorcontrib>Li, Dian Zhong</creatorcontrib><creatorcontrib>Nguyen-Thi, Henri</creatorcontrib><creatorcontrib>Xiao, Na Min</creatorcontrib><creatorcontrib>Bogno, Abdoul-Aziz</creatorcontrib><title>Tip-splitting instability and transition to seaweed growth during alloy solidification in anisotropically preferred growth direction</title><title>Acta materialia</title><description>The evolution of the solid–liquid interface morphology during the initial transient of directional solidification is investigated by quantitative phase-field numerical simulation during cooling down of an Al–4wt.% Cu alloy growing in the preferred 〈100〉-direction. Simulations show that the shape of the non-planar solid–liquid interface varies with the instantaneous growth parameters; in particular, above a critical value of tip velocity, cell/dendrite tips undergo Mullins–Sekerka morphological instability resulting in tip splitting and transition from cells or dendrites to seaweeds. The numerical simulations demonstrate that, despite the 〈100〉-direction corresponding to high solid–liquid interface energy, seaweed formation is predicted when noise, either inherent to the numerical mesh and/or intentionally added to the phase field, is strong enough to blur the solid anisotropy at the cell/dendrite tip, which confirms the analytical predictions of Brener et al. (1996). Both the tip-splitting mechanism responsible for the seaweed morphological transition as well as the seaweed growth dynamics are characterized. The numerical predictions are then compared to the seaweed transition evidenced on an Al–4wt.% Cu alloy by in situ and real-time synchrotron X-ray radiography in the initial transient of directional solidification, and good agreement is found.</description><subject>Alloy directional solidification</subject><subject>Aluminum base alloys</subject><subject>Anisotropy</subject><subject>Applied sciences</subject><subject>Computer simulation</subject><subject>Copper</subject><subject>Dendritic structure</subject><subject>Exact sciences and technology</subject><subject>Mathematical models</subject><subject>Metals. Metallurgy</subject><subject>Noise</subject><subject>Noise prediction</subject><subject>Numerical prediction</subject><subject>Phase-field</subject><subject>Seaweed</subject><subject>Seaweeds</subject><subject>Tip splitting</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE2LFDEQhhtxwXXXnyDkInjpNt9Jn0QWV4UFL-s5ZNLVaw2ZTptkXOa-P3wzziDePCUpnjdV9XTdW0YHRpn-sB18qH7n68ApEwNjA9Xji-6SWSN6LpV42e5Cjb2WSr7qXpeypZRxI-ll93SPa1_WiLXi8kBwKdVvsD0PxC8TqdkvBSumhdRECvhHgIk85PRYf5Jpn48ZH2M6kJIiTjhj8H9oXFoeS6o5ra0W44GsGWbI-Z88ZghH-rq7mH0s8OZ8XnU_bj_f33zt775_-Xbz6a4PUtjaS-s32lgG0gRJuR615Yr5kZlgZjEaCdMMM9dKWWU2GgRMYxiDCEpSr4wVV937079rTr_2UKrbYQkQo18g7Ytj1lIq5KhYQ9UJDTmV0iZ3a8adzwfHqDtad1t3tu6O1h1jrllvuXfnFr60tefmL2D5G-aWj1xZ3biPJw7avr8RsisBYQlwkuKmhP_p9AyvhZ5_</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Chen, Yun</creator><creator>Billia, Bernard</creator><creator>Li, Dian Zhong</creator><creator>Nguyen-Thi, Henri</creator><creator>Xiao, Na Min</creator><creator>Bogno, Abdoul-Aziz</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20140301</creationdate><title>Tip-splitting instability and transition to seaweed growth during alloy solidification in anisotropically preferred growth direction</title><author>Chen, Yun ; Billia, Bernard ; Li, Dian Zhong ; Nguyen-Thi, Henri ; Xiao, Na Min ; Bogno, Abdoul-Aziz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-48ab6781e47c4026968251a917c7f3974edfef2655857b6e3ed9c9c3c540a5783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alloy directional solidification</topic><topic>Aluminum base alloys</topic><topic>Anisotropy</topic><topic>Applied sciences</topic><topic>Computer simulation</topic><topic>Copper</topic><topic>Dendritic structure</topic><topic>Exact sciences and technology</topic><topic>Mathematical models</topic><topic>Metals. Metallurgy</topic><topic>Noise</topic><topic>Noise prediction</topic><topic>Numerical prediction</topic><topic>Phase-field</topic><topic>Seaweed</topic><topic>Seaweeds</topic><topic>Tip splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yun</creatorcontrib><creatorcontrib>Billia, Bernard</creatorcontrib><creatorcontrib>Li, Dian Zhong</creatorcontrib><creatorcontrib>Nguyen-Thi, Henri</creatorcontrib><creatorcontrib>Xiao, Na Min</creatorcontrib><creatorcontrib>Bogno, Abdoul-Aziz</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yun</au><au>Billia, Bernard</au><au>Li, Dian Zhong</au><au>Nguyen-Thi, Henri</au><au>Xiao, Na Min</au><au>Bogno, Abdoul-Aziz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tip-splitting instability and transition to seaweed growth during alloy solidification in anisotropically preferred growth direction</atitle><jtitle>Acta materialia</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>66</volume><spage>219</spage><epage>231</epage><pages>219-231</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>The evolution of the solid–liquid interface morphology during the initial transient of directional solidification is investigated by quantitative phase-field numerical simulation during cooling down of an Al–4wt.% Cu alloy growing in the preferred 〈100〉-direction. Simulations show that the shape of the non-planar solid–liquid interface varies with the instantaneous growth parameters; in particular, above a critical value of tip velocity, cell/dendrite tips undergo Mullins–Sekerka morphological instability resulting in tip splitting and transition from cells or dendrites to seaweeds. The numerical simulations demonstrate that, despite the 〈100〉-direction corresponding to high solid–liquid interface energy, seaweed formation is predicted when noise, either inherent to the numerical mesh and/or intentionally added to the phase field, is strong enough to blur the solid anisotropy at the cell/dendrite tip, which confirms the analytical predictions of Brener et al. (1996). Both the tip-splitting mechanism responsible for the seaweed morphological transition as well as the seaweed growth dynamics are characterized. The numerical predictions are then compared to the seaweed transition evidenced on an Al–4wt.% Cu alloy by in situ and real-time synchrotron X-ray radiography in the initial transient of directional solidification, and good agreement is found.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2013.11.069</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2014-03, Vol.66, p.219-231
issn 1359-6454
1873-2453
language eng
recordid cdi_proquest_miscellaneous_1880034951
source Elsevier ScienceDirect Journals Complete
subjects Alloy directional solidification
Aluminum base alloys
Anisotropy
Applied sciences
Computer simulation
Copper
Dendritic structure
Exact sciences and technology
Mathematical models
Metals. Metallurgy
Noise
Noise prediction
Numerical prediction
Phase-field
Seaweed
Seaweeds
Tip splitting
title Tip-splitting instability and transition to seaweed growth during alloy solidification in anisotropically preferred growth direction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A45%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tip-splitting%20instability%20and%20transition%20to%20seaweed%20growth%20during%20alloy%20solidification%20in%20anisotropically%20preferred%20growth%20direction&rft.jtitle=Acta%20materialia&rft.au=Chen,%20Yun&rft.date=2014-03-01&rft.volume=66&rft.spage=219&rft.epage=231&rft.pages=219-231&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2013.11.069&rft_dat=%3Cproquest_cross%3E1880034951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880034951&rft_id=info:pmid/&rft_els_id=S1359645413009270&rfr_iscdi=true