Modeling residual porosity in thick components consolidated by spark plasma sintering
A constitutive model for densification during spark plasma sintering was adapted and applied to an aluminum–magnesium alloy to determine the effect of increasing sample thickness on residual porosity after sintering. The contributions of electromigration, sintering stresses and external load (on cre...
Gespeichert in:
Veröffentlicht in: | Scripta materialia 2014-04, Vol.76, p.53-56 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 56 |
---|---|
container_issue | |
container_start_page | 53 |
container_title | Scripta materialia |
container_volume | 76 |
creator | Milligan, J. Hendrickx, P. Tünçay, M.M. Olevsky, E.A. Brochu, M. |
description | A constitutive model for densification during spark plasma sintering was adapted and applied to an aluminum–magnesium alloy to determine the effect of increasing sample thickness on residual porosity after sintering. The contributions of electromigration, sintering stresses and external load (on creep, diffusion and yielding) were all taken into consideration, as well as the effect of pressure on increasingly thick components. The results show that the overall description of the spark plasma sintering process agrees with the experimental results. |
doi_str_mv | 10.1016/j.scriptamat.2013.12.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880034850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359646213006325</els_id><sourcerecordid>1880034850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-9b93343937a1f3612d1443db8c655d9ba81e5a88b3684874c19d3fa1f6e258f93</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhCMEElB4Bx-5JHhjx3WOUPEngbjQs-XYG3CbxMF2kfr2GBWJI6edw8xo5ysKArQCCuJ6U0UT3Jz0qFNVU2AV1BUFflScgVzWpeSNOM6aNW0puKhPi_MYN5RSATWcFesXb3Fw0zsJGJ3d6YHMPvjo0p64iaQPZ7bE-HH2E04pZjlFPzirE1rS7UmcddiSedBx1CS6KWHIZRfFSa-HiJe_d1Gs7-_eVo_l8-vD0-rmuTScQirbrmWMs5YtNfQsP2SBc2Y7aUTT2LbTErDRUnZMSC6X3EBrWZ-9AutG9i1bFFeH3jn4zx3GpEYXDQ6DntDvogIpKWVcNjRb5cFq8roYsFdzcKMOewVU_ZBUG_VHUv2QVFCrTDJHbw9RzFO-HIZsdDgZtC6gScp693_JNzRKgvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880034850</pqid></control><display><type>article</type><title>Modeling residual porosity in thick components consolidated by spark plasma sintering</title><source>Elsevier ScienceDirect Journals</source><creator>Milligan, J. ; Hendrickx, P. ; Tünçay, M.M. ; Olevsky, E.A. ; Brochu, M.</creator><creatorcontrib>Milligan, J. ; Hendrickx, P. ; Tünçay, M.M. ; Olevsky, E.A. ; Brochu, M.</creatorcontrib><description>A constitutive model for densification during spark plasma sintering was adapted and applied to an aluminum–magnesium alloy to determine the effect of increasing sample thickness on residual porosity after sintering. The contributions of electromigration, sintering stresses and external load (on creep, diffusion and yielding) were all taken into consideration, as well as the effect of pressure on increasingly thick components. The results show that the overall description of the spark plasma sintering process agrees with the experimental results.</description><identifier>ISSN: 1359-6462</identifier><identifier>EISSN: 1872-8456</identifier><identifier>DOI: 10.1016/j.scriptamat.2013.12.014</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Aluminum alloys ; Consolidation ; Creep (materials) ; Densification ; Diffusion ; Electromigration ; Porosity ; Powder consolidation ; Sintering ; Sintering (powder metallurgy) ; Spark plasma sintering</subject><ispartof>Scripta materialia, 2014-04, Vol.76, p.53-56</ispartof><rights>2014 Acta Materialia Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-9b93343937a1f3612d1443db8c655d9ba81e5a88b3684874c19d3fa1f6e258f93</citedby><cites>FETCH-LOGICAL-c401t-9b93343937a1f3612d1443db8c655d9ba81e5a88b3684874c19d3fa1f6e258f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.scriptamat.2013.12.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3538,27906,27907,45977</link.rule.ids></links><search><creatorcontrib>Milligan, J.</creatorcontrib><creatorcontrib>Hendrickx, P.</creatorcontrib><creatorcontrib>Tünçay, M.M.</creatorcontrib><creatorcontrib>Olevsky, E.A.</creatorcontrib><creatorcontrib>Brochu, M.</creatorcontrib><title>Modeling residual porosity in thick components consolidated by spark plasma sintering</title><title>Scripta materialia</title><description>A constitutive model for densification during spark plasma sintering was adapted and applied to an aluminum–magnesium alloy to determine the effect of increasing sample thickness on residual porosity after sintering. The contributions of electromigration, sintering stresses and external load (on creep, diffusion and yielding) were all taken into consideration, as well as the effect of pressure on increasingly thick components. The results show that the overall description of the spark plasma sintering process agrees with the experimental results.</description><subject>Aluminum alloys</subject><subject>Consolidation</subject><subject>Creep (materials)</subject><subject>Densification</subject><subject>Diffusion</subject><subject>Electromigration</subject><subject>Porosity</subject><subject>Powder consolidation</subject><subject>Sintering</subject><subject>Sintering (powder metallurgy)</subject><subject>Spark plasma sintering</subject><issn>1359-6462</issn><issn>1872-8456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhCMEElB4Bx-5JHhjx3WOUPEngbjQs-XYG3CbxMF2kfr2GBWJI6edw8xo5ysKArQCCuJ6U0UT3Jz0qFNVU2AV1BUFflScgVzWpeSNOM6aNW0puKhPi_MYN5RSATWcFesXb3Fw0zsJGJ3d6YHMPvjo0p64iaQPZ7bE-HH2E04pZjlFPzirE1rS7UmcddiSedBx1CS6KWHIZRfFSa-HiJe_d1Gs7-_eVo_l8-vD0-rmuTScQirbrmWMs5YtNfQsP2SBc2Y7aUTT2LbTErDRUnZMSC6X3EBrWZ-9AutG9i1bFFeH3jn4zx3GpEYXDQ6DntDvogIpKWVcNjRb5cFq8roYsFdzcKMOewVU_ZBUG_VHUv2QVFCrTDJHbw9RzFO-HIZsdDgZtC6gScp693_JNzRKgvw</recordid><startdate>201404</startdate><enddate>201404</enddate><creator>Milligan, J.</creator><creator>Hendrickx, P.</creator><creator>Tünçay, M.M.</creator><creator>Olevsky, E.A.</creator><creator>Brochu, M.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201404</creationdate><title>Modeling residual porosity in thick components consolidated by spark plasma sintering</title><author>Milligan, J. ; Hendrickx, P. ; Tünçay, M.M. ; Olevsky, E.A. ; Brochu, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-9b93343937a1f3612d1443db8c655d9ba81e5a88b3684874c19d3fa1f6e258f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aluminum alloys</topic><topic>Consolidation</topic><topic>Creep (materials)</topic><topic>Densification</topic><topic>Diffusion</topic><topic>Electromigration</topic><topic>Porosity</topic><topic>Powder consolidation</topic><topic>Sintering</topic><topic>Sintering (powder metallurgy)</topic><topic>Spark plasma sintering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Milligan, J.</creatorcontrib><creatorcontrib>Hendrickx, P.</creatorcontrib><creatorcontrib>Tünçay, M.M.</creatorcontrib><creatorcontrib>Olevsky, E.A.</creatorcontrib><creatorcontrib>Brochu, M.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Scripta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Milligan, J.</au><au>Hendrickx, P.</au><au>Tünçay, M.M.</au><au>Olevsky, E.A.</au><au>Brochu, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling residual porosity in thick components consolidated by spark plasma sintering</atitle><jtitle>Scripta materialia</jtitle><date>2014-04</date><risdate>2014</risdate><volume>76</volume><spage>53</spage><epage>56</epage><pages>53-56</pages><issn>1359-6462</issn><eissn>1872-8456</eissn><abstract>A constitutive model for densification during spark plasma sintering was adapted and applied to an aluminum–magnesium alloy to determine the effect of increasing sample thickness on residual porosity after sintering. The contributions of electromigration, sintering stresses and external load (on creep, diffusion and yielding) were all taken into consideration, as well as the effect of pressure on increasingly thick components. The results show that the overall description of the spark plasma sintering process agrees with the experimental results.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.scriptamat.2013.12.014</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6462 |
ispartof | Scripta materialia, 2014-04, Vol.76, p.53-56 |
issn | 1359-6462 1872-8456 |
language | eng |
recordid | cdi_proquest_miscellaneous_1880034850 |
source | Elsevier ScienceDirect Journals |
subjects | Aluminum alloys Consolidation Creep (materials) Densification Diffusion Electromigration Porosity Powder consolidation Sintering Sintering (powder metallurgy) Spark plasma sintering |
title | Modeling residual porosity in thick components consolidated by spark plasma sintering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A49%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20residual%20porosity%20in%20thick%20components%20consolidated%20by%20spark%20plasma%20sintering&rft.jtitle=Scripta%20materialia&rft.au=Milligan,%20J.&rft.date=2014-04&rft.volume=76&rft.spage=53&rft.epage=56&rft.pages=53-56&rft.issn=1359-6462&rft.eissn=1872-8456&rft_id=info:doi/10.1016/j.scriptamat.2013.12.014&rft_dat=%3Cproquest_cross%3E1880034850%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880034850&rft_id=info:pmid/&rft_els_id=S1359646213006325&rfr_iscdi=true |