Modeling residual porosity in thick components consolidated by spark plasma sintering

A constitutive model for densification during spark plasma sintering was adapted and applied to an aluminum–magnesium alloy to determine the effect of increasing sample thickness on residual porosity after sintering. The contributions of electromigration, sintering stresses and external load (on cre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scripta materialia 2014-04, Vol.76, p.53-56
Hauptverfasser: Milligan, J., Hendrickx, P., Tünçay, M.M., Olevsky, E.A., Brochu, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 56
container_issue
container_start_page 53
container_title Scripta materialia
container_volume 76
creator Milligan, J.
Hendrickx, P.
Tünçay, M.M.
Olevsky, E.A.
Brochu, M.
description A constitutive model for densification during spark plasma sintering was adapted and applied to an aluminum–magnesium alloy to determine the effect of increasing sample thickness on residual porosity after sintering. The contributions of electromigration, sintering stresses and external load (on creep, diffusion and yielding) were all taken into consideration, as well as the effect of pressure on increasingly thick components. The results show that the overall description of the spark plasma sintering process agrees with the experimental results.
doi_str_mv 10.1016/j.scriptamat.2013.12.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880034850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359646213006325</els_id><sourcerecordid>1880034850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-9b93343937a1f3612d1443db8c655d9ba81e5a88b3684874c19d3fa1f6e258f93</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhCMEElB4Bx-5JHhjx3WOUPEngbjQs-XYG3CbxMF2kfr2GBWJI6edw8xo5ysKArQCCuJ6U0UT3Jz0qFNVU2AV1BUFflScgVzWpeSNOM6aNW0puKhPi_MYN5RSATWcFesXb3Fw0zsJGJ3d6YHMPvjo0p64iaQPZ7bE-HH2E04pZjlFPzirE1rS7UmcddiSedBx1CS6KWHIZRfFSa-HiJe_d1Gs7-_eVo_l8-vD0-rmuTScQirbrmWMs5YtNfQsP2SBc2Y7aUTT2LbTErDRUnZMSC6X3EBrWZ-9AutG9i1bFFeH3jn4zx3GpEYXDQ6DntDvogIpKWVcNjRb5cFq8roYsFdzcKMOewVU_ZBUG_VHUv2QVFCrTDJHbw9RzFO-HIZsdDgZtC6gScp693_JNzRKgvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880034850</pqid></control><display><type>article</type><title>Modeling residual porosity in thick components consolidated by spark plasma sintering</title><source>Elsevier ScienceDirect Journals</source><creator>Milligan, J. ; Hendrickx, P. ; Tünçay, M.M. ; Olevsky, E.A. ; Brochu, M.</creator><creatorcontrib>Milligan, J. ; Hendrickx, P. ; Tünçay, M.M. ; Olevsky, E.A. ; Brochu, M.</creatorcontrib><description>A constitutive model for densification during spark plasma sintering was adapted and applied to an aluminum–magnesium alloy to determine the effect of increasing sample thickness on residual porosity after sintering. The contributions of electromigration, sintering stresses and external load (on creep, diffusion and yielding) were all taken into consideration, as well as the effect of pressure on increasingly thick components. The results show that the overall description of the spark plasma sintering process agrees with the experimental results.</description><identifier>ISSN: 1359-6462</identifier><identifier>EISSN: 1872-8456</identifier><identifier>DOI: 10.1016/j.scriptamat.2013.12.014</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Aluminum alloys ; Consolidation ; Creep (materials) ; Densification ; Diffusion ; Electromigration ; Porosity ; Powder consolidation ; Sintering ; Sintering (powder metallurgy) ; Spark plasma sintering</subject><ispartof>Scripta materialia, 2014-04, Vol.76, p.53-56</ispartof><rights>2014 Acta Materialia Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-9b93343937a1f3612d1443db8c655d9ba81e5a88b3684874c19d3fa1f6e258f93</citedby><cites>FETCH-LOGICAL-c401t-9b93343937a1f3612d1443db8c655d9ba81e5a88b3684874c19d3fa1f6e258f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.scriptamat.2013.12.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3538,27906,27907,45977</link.rule.ids></links><search><creatorcontrib>Milligan, J.</creatorcontrib><creatorcontrib>Hendrickx, P.</creatorcontrib><creatorcontrib>Tünçay, M.M.</creatorcontrib><creatorcontrib>Olevsky, E.A.</creatorcontrib><creatorcontrib>Brochu, M.</creatorcontrib><title>Modeling residual porosity in thick components consolidated by spark plasma sintering</title><title>Scripta materialia</title><description>A constitutive model for densification during spark plasma sintering was adapted and applied to an aluminum–magnesium alloy to determine the effect of increasing sample thickness on residual porosity after sintering. The contributions of electromigration, sintering stresses and external load (on creep, diffusion and yielding) were all taken into consideration, as well as the effect of pressure on increasingly thick components. The results show that the overall description of the spark plasma sintering process agrees with the experimental results.</description><subject>Aluminum alloys</subject><subject>Consolidation</subject><subject>Creep (materials)</subject><subject>Densification</subject><subject>Diffusion</subject><subject>Electromigration</subject><subject>Porosity</subject><subject>Powder consolidation</subject><subject>Sintering</subject><subject>Sintering (powder metallurgy)</subject><subject>Spark plasma sintering</subject><issn>1359-6462</issn><issn>1872-8456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhCMEElB4Bx-5JHhjx3WOUPEngbjQs-XYG3CbxMF2kfr2GBWJI6edw8xo5ysKArQCCuJ6U0UT3Jz0qFNVU2AV1BUFflScgVzWpeSNOM6aNW0puKhPi_MYN5RSATWcFesXb3Fw0zsJGJ3d6YHMPvjo0p64iaQPZ7bE-HH2E04pZjlFPzirE1rS7UmcddiSedBx1CS6KWHIZRfFSa-HiJe_d1Gs7-_eVo_l8-vD0-rmuTScQirbrmWMs5YtNfQsP2SBc2Y7aUTT2LbTErDRUnZMSC6X3EBrWZ-9AutG9i1bFFeH3jn4zx3GpEYXDQ6DntDvogIpKWVcNjRb5cFq8roYsFdzcKMOewVU_ZBUG_VHUv2QVFCrTDJHbw9RzFO-HIZsdDgZtC6gScp693_JNzRKgvw</recordid><startdate>201404</startdate><enddate>201404</enddate><creator>Milligan, J.</creator><creator>Hendrickx, P.</creator><creator>Tünçay, M.M.</creator><creator>Olevsky, E.A.</creator><creator>Brochu, M.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201404</creationdate><title>Modeling residual porosity in thick components consolidated by spark plasma sintering</title><author>Milligan, J. ; Hendrickx, P. ; Tünçay, M.M. ; Olevsky, E.A. ; Brochu, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-9b93343937a1f3612d1443db8c655d9ba81e5a88b3684874c19d3fa1f6e258f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aluminum alloys</topic><topic>Consolidation</topic><topic>Creep (materials)</topic><topic>Densification</topic><topic>Diffusion</topic><topic>Electromigration</topic><topic>Porosity</topic><topic>Powder consolidation</topic><topic>Sintering</topic><topic>Sintering (powder metallurgy)</topic><topic>Spark plasma sintering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Milligan, J.</creatorcontrib><creatorcontrib>Hendrickx, P.</creatorcontrib><creatorcontrib>Tünçay, M.M.</creatorcontrib><creatorcontrib>Olevsky, E.A.</creatorcontrib><creatorcontrib>Brochu, M.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Scripta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Milligan, J.</au><au>Hendrickx, P.</au><au>Tünçay, M.M.</au><au>Olevsky, E.A.</au><au>Brochu, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling residual porosity in thick components consolidated by spark plasma sintering</atitle><jtitle>Scripta materialia</jtitle><date>2014-04</date><risdate>2014</risdate><volume>76</volume><spage>53</spage><epage>56</epage><pages>53-56</pages><issn>1359-6462</issn><eissn>1872-8456</eissn><abstract>A constitutive model for densification during spark plasma sintering was adapted and applied to an aluminum–magnesium alloy to determine the effect of increasing sample thickness on residual porosity after sintering. The contributions of electromigration, sintering stresses and external load (on creep, diffusion and yielding) were all taken into consideration, as well as the effect of pressure on increasingly thick components. The results show that the overall description of the spark plasma sintering process agrees with the experimental results.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.scriptamat.2013.12.014</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-6462
ispartof Scripta materialia, 2014-04, Vol.76, p.53-56
issn 1359-6462
1872-8456
language eng
recordid cdi_proquest_miscellaneous_1880034850
source Elsevier ScienceDirect Journals
subjects Aluminum alloys
Consolidation
Creep (materials)
Densification
Diffusion
Electromigration
Porosity
Powder consolidation
Sintering
Sintering (powder metallurgy)
Spark plasma sintering
title Modeling residual porosity in thick components consolidated by spark plasma sintering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A49%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20residual%20porosity%20in%20thick%20components%20consolidated%20by%20spark%20plasma%20sintering&rft.jtitle=Scripta%20materialia&rft.au=Milligan,%20J.&rft.date=2014-04&rft.volume=76&rft.spage=53&rft.epage=56&rft.pages=53-56&rft.issn=1359-6462&rft.eissn=1872-8456&rft_id=info:doi/10.1016/j.scriptamat.2013.12.014&rft_dat=%3Cproquest_cross%3E1880034850%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880034850&rft_id=info:pmid/&rft_els_id=S1359646213006325&rfr_iscdi=true