Computer simulation of phase transformation and plastic deformation in IN718 superalloy: Microstructural evolution during precipitation
Microstructural evolution during co-precipitation of γ′, γ″ and δ phases from a supersaturated γ matrix during aging of superalloy Inconel 718 (IN718) is investigated by computer simulation using the phase-field method. The precipitation model is quantitative, using as model inputs ab initio calcula...
Gespeichert in:
Veröffentlicht in: | Acta materialia 2014-02, Vol.65, p.270-286 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 286 |
---|---|
container_issue | |
container_start_page | 270 |
container_title | Acta materialia |
container_volume | 65 |
creator | Zhou, N. Lv, D.C. Zhang, H.L. McAllister, D. Zhang, F. Mills, M.J. Wang, Y. |
description | Microstructural evolution during co-precipitation of γ′, γ″ and δ phases from a supersaturated γ matrix during aging of superalloy Inconel 718 (IN718) is investigated by computer simulation using the phase-field method. The precipitation model is quantitative, using as model inputs ab initio calculations of elastic constants, experimental data on lattice parameters, precipitate–matrix orientation relationship, interfacial energy of each individual precipitate phase and interdiffusivities, and a Ni–Nb–Al pseudo-ternary thermodynamic database specifically developed for IN718. In order to simulate statistically representative multiphase microstructures observed in the alloy, the Kim–Kim–Suzuki treatment of interfaces is employed. Simulation results show how alloy composition, lattice misfit, external stress, temperature and time affect precipitate microstructure and variant selection during isothermal aging, without any a priori assumptions about key microstructural features including size, shape, volume fraction and spatial distribution of different types of precipitates and different variants of the same precipitate phase. The shapes of precipitates and their coarsening kinetics are analyzed based on the two-dimensional moment invariant. The various multiphase microstructures generated by the simulations have been used as model inputs in a study to investigate how precipitate microstructure (in particular shape and spatial distribution) influences the strength of IN718. |
doi_str_mv | 10.1016/j.actamat.2013.10.069 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880033485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S135964541300832X</els_id><sourcerecordid>1880033485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-e79e61fc75a09fc19feae2beb2564129902fb58959d6f1ea3c7c1b2405b6e8a43</originalsourceid><addsrcrecordid>eNqFkM9u1DAQhyMEEqXwCEi-IHHJ1nbsxOaC0KpApQIXOFsTZwxeJXHwn0p9Al4bb3dVjpxm9Ok3M5qvaV4zumOU9VeHHdgMC-Qdp6yrbEd7_aS5YGroWi5k97T2ndRtL6R43rxI6UAp44OgF82ffVi2kjGS5JcyQ_ZhJcGR7RckJDnCmlyIy4nDOpFthpS9JRP-434lN18HpkgqG0aY53D_jnzxNoaUY7G5VEbwLszlIT6V6NefZIto_ebzw46XzTMHc8JX53rZ_Ph4_X3_ub399ulm_-G2tULw3OKgsWfODhKodpZph4B8xJHLXjCuNeVulEpLPfWOIXR2sGzkgsqxRwWiu2zenvZuMfwumLJZfLI4z7BiKMkwpSjtOqFkjcpT9PhHiujMFv0C8d4wao7izcGcxZuj-COu4uvcm_MJSBZmVx1anx6HueKaC61q7v0ph_XfO4_RJOtxtTj5aiabKfj_XPoL01Cf9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880033485</pqid></control><display><type>article</type><title>Computer simulation of phase transformation and plastic deformation in IN718 superalloy: Microstructural evolution during precipitation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zhou, N. ; Lv, D.C. ; Zhang, H.L. ; McAllister, D. ; Zhang, F. ; Mills, M.J. ; Wang, Y.</creator><creatorcontrib>Zhou, N. ; Lv, D.C. ; Zhang, H.L. ; McAllister, D. ; Zhang, F. ; Mills, M.J. ; Wang, Y.</creatorcontrib><description>Microstructural evolution during co-precipitation of γ′, γ″ and δ phases from a supersaturated γ matrix during aging of superalloy Inconel 718 (IN718) is investigated by computer simulation using the phase-field method. The precipitation model is quantitative, using as model inputs ab initio calculations of elastic constants, experimental data on lattice parameters, precipitate–matrix orientation relationship, interfacial energy of each individual precipitate phase and interdiffusivities, and a Ni–Nb–Al pseudo-ternary thermodynamic database specifically developed for IN718. In order to simulate statistically representative multiphase microstructures observed in the alloy, the Kim–Kim–Suzuki treatment of interfaces is employed. Simulation results show how alloy composition, lattice misfit, external stress, temperature and time affect precipitate microstructure and variant selection during isothermal aging, without any a priori assumptions about key microstructural features including size, shape, volume fraction and spatial distribution of different types of precipitates and different variants of the same precipitate phase. The shapes of precipitates and their coarsening kinetics are analyzed based on the two-dimensional moment invariant. The various multiphase microstructures generated by the simulations have been used as model inputs in a study to investigate how precipitate microstructure (in particular shape and spatial distribution) influences the strength of IN718.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2013.10.069</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Co-precipitation ; Computer simulation ; Evolution ; Exact sciences and technology ; External stress ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Microstructure ; Multiphase ; Nickel base alloys ; Phase-field method ; Precipitates ; Precipitation ; Spatial distribution ; Superalloys ; Variant selection</subject><ispartof>Acta materialia, 2014-02, Vol.65, p.270-286</ispartof><rights>2013 Acta Materialia Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-e79e61fc75a09fc19feae2beb2564129902fb58959d6f1ea3c7c1b2405b6e8a43</citedby><cites>FETCH-LOGICAL-c442t-e79e61fc75a09fc19feae2beb2564129902fb58959d6f1ea3c7c1b2405b6e8a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S135964541300832X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28292498$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, N.</creatorcontrib><creatorcontrib>Lv, D.C.</creatorcontrib><creatorcontrib>Zhang, H.L.</creatorcontrib><creatorcontrib>McAllister, D.</creatorcontrib><creatorcontrib>Zhang, F.</creatorcontrib><creatorcontrib>Mills, M.J.</creatorcontrib><creatorcontrib>Wang, Y.</creatorcontrib><title>Computer simulation of phase transformation and plastic deformation in IN718 superalloy: Microstructural evolution during precipitation</title><title>Acta materialia</title><description>Microstructural evolution during co-precipitation of γ′, γ″ and δ phases from a supersaturated γ matrix during aging of superalloy Inconel 718 (IN718) is investigated by computer simulation using the phase-field method. The precipitation model is quantitative, using as model inputs ab initio calculations of elastic constants, experimental data on lattice parameters, precipitate–matrix orientation relationship, interfacial energy of each individual precipitate phase and interdiffusivities, and a Ni–Nb–Al pseudo-ternary thermodynamic database specifically developed for IN718. In order to simulate statistically representative multiphase microstructures observed in the alloy, the Kim–Kim–Suzuki treatment of interfaces is employed. Simulation results show how alloy composition, lattice misfit, external stress, temperature and time affect precipitate microstructure and variant selection during isothermal aging, without any a priori assumptions about key microstructural features including size, shape, volume fraction and spatial distribution of different types of precipitates and different variants of the same precipitate phase. The shapes of precipitates and their coarsening kinetics are analyzed based on the two-dimensional moment invariant. The various multiphase microstructures generated by the simulations have been used as model inputs in a study to investigate how precipitate microstructure (in particular shape and spatial distribution) influences the strength of IN718.</description><subject>Applied sciences</subject><subject>Co-precipitation</subject><subject>Computer simulation</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>External stress</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Microstructure</subject><subject>Multiphase</subject><subject>Nickel base alloys</subject><subject>Phase-field method</subject><subject>Precipitates</subject><subject>Precipitation</subject><subject>Spatial distribution</subject><subject>Superalloys</subject><subject>Variant selection</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkM9u1DAQhyMEEqXwCEi-IHHJ1nbsxOaC0KpApQIXOFsTZwxeJXHwn0p9Al4bb3dVjpxm9Ok3M5qvaV4zumOU9VeHHdgMC-Qdp6yrbEd7_aS5YGroWi5k97T2ndRtL6R43rxI6UAp44OgF82ffVi2kjGS5JcyQ_ZhJcGR7RckJDnCmlyIy4nDOpFthpS9JRP-434lN18HpkgqG0aY53D_jnzxNoaUY7G5VEbwLszlIT6V6NefZIto_ebzw46XzTMHc8JX53rZ_Ph4_X3_ub399ulm_-G2tULw3OKgsWfODhKodpZph4B8xJHLXjCuNeVulEpLPfWOIXR2sGzkgsqxRwWiu2zenvZuMfwumLJZfLI4z7BiKMkwpSjtOqFkjcpT9PhHiujMFv0C8d4wao7izcGcxZuj-COu4uvcm_MJSBZmVx1anx6HueKaC61q7v0ph_XfO4_RJOtxtTj5aiabKfj_XPoL01Cf9g</recordid><startdate>20140215</startdate><enddate>20140215</enddate><creator>Zhou, N.</creator><creator>Lv, D.C.</creator><creator>Zhang, H.L.</creator><creator>McAllister, D.</creator><creator>Zhang, F.</creator><creator>Mills, M.J.</creator><creator>Wang, Y.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20140215</creationdate><title>Computer simulation of phase transformation and plastic deformation in IN718 superalloy: Microstructural evolution during precipitation</title><author>Zhou, N. ; Lv, D.C. ; Zhang, H.L. ; McAllister, D. ; Zhang, F. ; Mills, M.J. ; Wang, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-e79e61fc75a09fc19feae2beb2564129902fb58959d6f1ea3c7c1b2405b6e8a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Co-precipitation</topic><topic>Computer simulation</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>External stress</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Microstructure</topic><topic>Multiphase</topic><topic>Nickel base alloys</topic><topic>Phase-field method</topic><topic>Precipitates</topic><topic>Precipitation</topic><topic>Spatial distribution</topic><topic>Superalloys</topic><topic>Variant selection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, N.</creatorcontrib><creatorcontrib>Lv, D.C.</creatorcontrib><creatorcontrib>Zhang, H.L.</creatorcontrib><creatorcontrib>McAllister, D.</creatorcontrib><creatorcontrib>Zhang, F.</creatorcontrib><creatorcontrib>Mills, M.J.</creatorcontrib><creatorcontrib>Wang, Y.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, N.</au><au>Lv, D.C.</au><au>Zhang, H.L.</au><au>McAllister, D.</au><au>Zhang, F.</au><au>Mills, M.J.</au><au>Wang, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer simulation of phase transformation and plastic deformation in IN718 superalloy: Microstructural evolution during precipitation</atitle><jtitle>Acta materialia</jtitle><date>2014-02-15</date><risdate>2014</risdate><volume>65</volume><spage>270</spage><epage>286</epage><pages>270-286</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>Microstructural evolution during co-precipitation of γ′, γ″ and δ phases from a supersaturated γ matrix during aging of superalloy Inconel 718 (IN718) is investigated by computer simulation using the phase-field method. The precipitation model is quantitative, using as model inputs ab initio calculations of elastic constants, experimental data on lattice parameters, precipitate–matrix orientation relationship, interfacial energy of each individual precipitate phase and interdiffusivities, and a Ni–Nb–Al pseudo-ternary thermodynamic database specifically developed for IN718. In order to simulate statistically representative multiphase microstructures observed in the alloy, the Kim–Kim–Suzuki treatment of interfaces is employed. Simulation results show how alloy composition, lattice misfit, external stress, temperature and time affect precipitate microstructure and variant selection during isothermal aging, without any a priori assumptions about key microstructural features including size, shape, volume fraction and spatial distribution of different types of precipitates and different variants of the same precipitate phase. The shapes of precipitates and their coarsening kinetics are analyzed based on the two-dimensional moment invariant. The various multiphase microstructures generated by the simulations have been used as model inputs in a study to investigate how precipitate microstructure (in particular shape and spatial distribution) influences the strength of IN718.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2013.10.069</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6454 |
ispartof | Acta materialia, 2014-02, Vol.65, p.270-286 |
issn | 1359-6454 1873-2453 |
language | eng |
recordid | cdi_proquest_miscellaneous_1880033485 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences Co-precipitation Computer simulation Evolution Exact sciences and technology External stress Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metals. Metallurgy Microstructure Multiphase Nickel base alloys Phase-field method Precipitates Precipitation Spatial distribution Superalloys Variant selection |
title | Computer simulation of phase transformation and plastic deformation in IN718 superalloy: Microstructural evolution during precipitation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A13%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20simulation%20of%20phase%20transformation%20and%20plastic%20deformation%20in%20IN718%20superalloy:%20Microstructural%20evolution%20during%20precipitation&rft.jtitle=Acta%20materialia&rft.au=Zhou,%20N.&rft.date=2014-02-15&rft.volume=65&rft.spage=270&rft.epage=286&rft.pages=270-286&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2013.10.069&rft_dat=%3Cproquest_cross%3E1880033485%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880033485&rft_id=info:pmid/&rft_els_id=S135964541300832X&rfr_iscdi=true |