Computer simulation of phase transformation and plastic deformation in IN718 superalloy: Microstructural evolution during precipitation

Microstructural evolution during co-precipitation of γ′, γ″ and δ phases from a supersaturated γ matrix during aging of superalloy Inconel 718 (IN718) is investigated by computer simulation using the phase-field method. The precipitation model is quantitative, using as model inputs ab initio calcula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2014-02, Vol.65, p.270-286
Hauptverfasser: Zhou, N., Lv, D.C., Zhang, H.L., McAllister, D., Zhang, F., Mills, M.J., Wang, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 286
container_issue
container_start_page 270
container_title Acta materialia
container_volume 65
creator Zhou, N.
Lv, D.C.
Zhang, H.L.
McAllister, D.
Zhang, F.
Mills, M.J.
Wang, Y.
description Microstructural evolution during co-precipitation of γ′, γ″ and δ phases from a supersaturated γ matrix during aging of superalloy Inconel 718 (IN718) is investigated by computer simulation using the phase-field method. The precipitation model is quantitative, using as model inputs ab initio calculations of elastic constants, experimental data on lattice parameters, precipitate–matrix orientation relationship, interfacial energy of each individual precipitate phase and interdiffusivities, and a Ni–Nb–Al pseudo-ternary thermodynamic database specifically developed for IN718. In order to simulate statistically representative multiphase microstructures observed in the alloy, the Kim–Kim–Suzuki treatment of interfaces is employed. Simulation results show how alloy composition, lattice misfit, external stress, temperature and time affect precipitate microstructure and variant selection during isothermal aging, without any a priori assumptions about key microstructural features including size, shape, volume fraction and spatial distribution of different types of precipitates and different variants of the same precipitate phase. The shapes of precipitates and their coarsening kinetics are analyzed based on the two-dimensional moment invariant. The various multiphase microstructures generated by the simulations have been used as model inputs in a study to investigate how precipitate microstructure (in particular shape and spatial distribution) influences the strength of IN718.
doi_str_mv 10.1016/j.actamat.2013.10.069
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880033485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S135964541300832X</els_id><sourcerecordid>1880033485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-e79e61fc75a09fc19feae2beb2564129902fb58959d6f1ea3c7c1b2405b6e8a43</originalsourceid><addsrcrecordid>eNqFkM9u1DAQhyMEEqXwCEi-IHHJ1nbsxOaC0KpApQIXOFsTZwxeJXHwn0p9Al4bb3dVjpxm9Ok3M5qvaV4zumOU9VeHHdgMC-Qdp6yrbEd7_aS5YGroWi5k97T2ndRtL6R43rxI6UAp44OgF82ffVi2kjGS5JcyQ_ZhJcGR7RckJDnCmlyIy4nDOpFthpS9JRP-434lN18HpkgqG0aY53D_jnzxNoaUY7G5VEbwLszlIT6V6NefZIto_ebzw46XzTMHc8JX53rZ_Ph4_X3_ub399ulm_-G2tULw3OKgsWfODhKodpZph4B8xJHLXjCuNeVulEpLPfWOIXR2sGzkgsqxRwWiu2zenvZuMfwumLJZfLI4z7BiKMkwpSjtOqFkjcpT9PhHiujMFv0C8d4wao7izcGcxZuj-COu4uvcm_MJSBZmVx1anx6HueKaC61q7v0ph_XfO4_RJOtxtTj5aiabKfj_XPoL01Cf9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880033485</pqid></control><display><type>article</type><title>Computer simulation of phase transformation and plastic deformation in IN718 superalloy: Microstructural evolution during precipitation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zhou, N. ; Lv, D.C. ; Zhang, H.L. ; McAllister, D. ; Zhang, F. ; Mills, M.J. ; Wang, Y.</creator><creatorcontrib>Zhou, N. ; Lv, D.C. ; Zhang, H.L. ; McAllister, D. ; Zhang, F. ; Mills, M.J. ; Wang, Y.</creatorcontrib><description>Microstructural evolution during co-precipitation of γ′, γ″ and δ phases from a supersaturated γ matrix during aging of superalloy Inconel 718 (IN718) is investigated by computer simulation using the phase-field method. The precipitation model is quantitative, using as model inputs ab initio calculations of elastic constants, experimental data on lattice parameters, precipitate–matrix orientation relationship, interfacial energy of each individual precipitate phase and interdiffusivities, and a Ni–Nb–Al pseudo-ternary thermodynamic database specifically developed for IN718. In order to simulate statistically representative multiphase microstructures observed in the alloy, the Kim–Kim–Suzuki treatment of interfaces is employed. Simulation results show how alloy composition, lattice misfit, external stress, temperature and time affect precipitate microstructure and variant selection during isothermal aging, without any a priori assumptions about key microstructural features including size, shape, volume fraction and spatial distribution of different types of precipitates and different variants of the same precipitate phase. The shapes of precipitates and their coarsening kinetics are analyzed based on the two-dimensional moment invariant. The various multiphase microstructures generated by the simulations have been used as model inputs in a study to investigate how precipitate microstructure (in particular shape and spatial distribution) influences the strength of IN718.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2013.10.069</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Co-precipitation ; Computer simulation ; Evolution ; Exact sciences and technology ; External stress ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Microstructure ; Multiphase ; Nickel base alloys ; Phase-field method ; Precipitates ; Precipitation ; Spatial distribution ; Superalloys ; Variant selection</subject><ispartof>Acta materialia, 2014-02, Vol.65, p.270-286</ispartof><rights>2013 Acta Materialia Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-e79e61fc75a09fc19feae2beb2564129902fb58959d6f1ea3c7c1b2405b6e8a43</citedby><cites>FETCH-LOGICAL-c442t-e79e61fc75a09fc19feae2beb2564129902fb58959d6f1ea3c7c1b2405b6e8a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S135964541300832X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28292498$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, N.</creatorcontrib><creatorcontrib>Lv, D.C.</creatorcontrib><creatorcontrib>Zhang, H.L.</creatorcontrib><creatorcontrib>McAllister, D.</creatorcontrib><creatorcontrib>Zhang, F.</creatorcontrib><creatorcontrib>Mills, M.J.</creatorcontrib><creatorcontrib>Wang, Y.</creatorcontrib><title>Computer simulation of phase transformation and plastic deformation in IN718 superalloy: Microstructural evolution during precipitation</title><title>Acta materialia</title><description>Microstructural evolution during co-precipitation of γ′, γ″ and δ phases from a supersaturated γ matrix during aging of superalloy Inconel 718 (IN718) is investigated by computer simulation using the phase-field method. The precipitation model is quantitative, using as model inputs ab initio calculations of elastic constants, experimental data on lattice parameters, precipitate–matrix orientation relationship, interfacial energy of each individual precipitate phase and interdiffusivities, and a Ni–Nb–Al pseudo-ternary thermodynamic database specifically developed for IN718. In order to simulate statistically representative multiphase microstructures observed in the alloy, the Kim–Kim–Suzuki treatment of interfaces is employed. Simulation results show how alloy composition, lattice misfit, external stress, temperature and time affect precipitate microstructure and variant selection during isothermal aging, without any a priori assumptions about key microstructural features including size, shape, volume fraction and spatial distribution of different types of precipitates and different variants of the same precipitate phase. The shapes of precipitates and their coarsening kinetics are analyzed based on the two-dimensional moment invariant. The various multiphase microstructures generated by the simulations have been used as model inputs in a study to investigate how precipitate microstructure (in particular shape and spatial distribution) influences the strength of IN718.</description><subject>Applied sciences</subject><subject>Co-precipitation</subject><subject>Computer simulation</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>External stress</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Microstructure</subject><subject>Multiphase</subject><subject>Nickel base alloys</subject><subject>Phase-field method</subject><subject>Precipitates</subject><subject>Precipitation</subject><subject>Spatial distribution</subject><subject>Superalloys</subject><subject>Variant selection</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkM9u1DAQhyMEEqXwCEi-IHHJ1nbsxOaC0KpApQIXOFsTZwxeJXHwn0p9Al4bb3dVjpxm9Ok3M5qvaV4zumOU9VeHHdgMC-Qdp6yrbEd7_aS5YGroWi5k97T2ndRtL6R43rxI6UAp44OgF82ffVi2kjGS5JcyQ_ZhJcGR7RckJDnCmlyIy4nDOpFthpS9JRP-434lN18HpkgqG0aY53D_jnzxNoaUY7G5VEbwLszlIT6V6NefZIto_ebzw46XzTMHc8JX53rZ_Ph4_X3_ub399ulm_-G2tULw3OKgsWfODhKodpZph4B8xJHLXjCuNeVulEpLPfWOIXR2sGzkgsqxRwWiu2zenvZuMfwumLJZfLI4z7BiKMkwpSjtOqFkjcpT9PhHiujMFv0C8d4wao7izcGcxZuj-COu4uvcm_MJSBZmVx1anx6HueKaC61q7v0ph_XfO4_RJOtxtTj5aiabKfj_XPoL01Cf9g</recordid><startdate>20140215</startdate><enddate>20140215</enddate><creator>Zhou, N.</creator><creator>Lv, D.C.</creator><creator>Zhang, H.L.</creator><creator>McAllister, D.</creator><creator>Zhang, F.</creator><creator>Mills, M.J.</creator><creator>Wang, Y.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20140215</creationdate><title>Computer simulation of phase transformation and plastic deformation in IN718 superalloy: Microstructural evolution during precipitation</title><author>Zhou, N. ; Lv, D.C. ; Zhang, H.L. ; McAllister, D. ; Zhang, F. ; Mills, M.J. ; Wang, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-e79e61fc75a09fc19feae2beb2564129902fb58959d6f1ea3c7c1b2405b6e8a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Co-precipitation</topic><topic>Computer simulation</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>External stress</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Microstructure</topic><topic>Multiphase</topic><topic>Nickel base alloys</topic><topic>Phase-field method</topic><topic>Precipitates</topic><topic>Precipitation</topic><topic>Spatial distribution</topic><topic>Superalloys</topic><topic>Variant selection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, N.</creatorcontrib><creatorcontrib>Lv, D.C.</creatorcontrib><creatorcontrib>Zhang, H.L.</creatorcontrib><creatorcontrib>McAllister, D.</creatorcontrib><creatorcontrib>Zhang, F.</creatorcontrib><creatorcontrib>Mills, M.J.</creatorcontrib><creatorcontrib>Wang, Y.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, N.</au><au>Lv, D.C.</au><au>Zhang, H.L.</au><au>McAllister, D.</au><au>Zhang, F.</au><au>Mills, M.J.</au><au>Wang, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer simulation of phase transformation and plastic deformation in IN718 superalloy: Microstructural evolution during precipitation</atitle><jtitle>Acta materialia</jtitle><date>2014-02-15</date><risdate>2014</risdate><volume>65</volume><spage>270</spage><epage>286</epage><pages>270-286</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>Microstructural evolution during co-precipitation of γ′, γ″ and δ phases from a supersaturated γ matrix during aging of superalloy Inconel 718 (IN718) is investigated by computer simulation using the phase-field method. The precipitation model is quantitative, using as model inputs ab initio calculations of elastic constants, experimental data on lattice parameters, precipitate–matrix orientation relationship, interfacial energy of each individual precipitate phase and interdiffusivities, and a Ni–Nb–Al pseudo-ternary thermodynamic database specifically developed for IN718. In order to simulate statistically representative multiphase microstructures observed in the alloy, the Kim–Kim–Suzuki treatment of interfaces is employed. Simulation results show how alloy composition, lattice misfit, external stress, temperature and time affect precipitate microstructure and variant selection during isothermal aging, without any a priori assumptions about key microstructural features including size, shape, volume fraction and spatial distribution of different types of precipitates and different variants of the same precipitate phase. The shapes of precipitates and their coarsening kinetics are analyzed based on the two-dimensional moment invariant. The various multiphase microstructures generated by the simulations have been used as model inputs in a study to investigate how precipitate microstructure (in particular shape and spatial distribution) influences the strength of IN718.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2013.10.069</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2014-02, Vol.65, p.270-286
issn 1359-6454
1873-2453
language eng
recordid cdi_proquest_miscellaneous_1880033485
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Co-precipitation
Computer simulation
Evolution
Exact sciences and technology
External stress
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
Microstructure
Multiphase
Nickel base alloys
Phase-field method
Precipitates
Precipitation
Spatial distribution
Superalloys
Variant selection
title Computer simulation of phase transformation and plastic deformation in IN718 superalloy: Microstructural evolution during precipitation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A13%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20simulation%20of%20phase%20transformation%20and%20plastic%20deformation%20in%20IN718%20superalloy:%20Microstructural%20evolution%20during%20precipitation&rft.jtitle=Acta%20materialia&rft.au=Zhou,%20N.&rft.date=2014-02-15&rft.volume=65&rft.spage=270&rft.epage=286&rft.pages=270-286&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2013.10.069&rft_dat=%3Cproquest_cross%3E1880033485%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880033485&rft_id=info:pmid/&rft_els_id=S135964541300832X&rfr_iscdi=true