Benchmark study of the length dependent thermal conductivity of individual suspended, pristine SWCNTs

The thermal conductivity of individual suspended single-walled carbon nanotubes (SWCNTs) has been theoretically predicated to increase with length but this has never been verified experimentally. This then leads to the question of whether the thermal conductivity saturates to a finite constant value...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2017-01, Vol.9 (4), p.1496-1501
Hauptverfasser: Liu, Jinhui, Li, Tianyi, Hu, Yudong, Zhang, Xing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1501
container_issue 4
container_start_page 1496
container_title Nanoscale
container_volume 9
creator Liu, Jinhui
Li, Tianyi
Hu, Yudong
Zhang, Xing
description The thermal conductivity of individual suspended single-walled carbon nanotubes (SWCNTs) has been theoretically predicated to increase with length but this has never been verified experimentally. This then leads to the question of whether the thermal conductivity saturates to a finite constant value in ultra-long SWCNTs. This paper reports on experimental measurements of the thermal conductivity of individual suspended SWCNTs as a function of the characteristic thermal transport length using the same individual suspended SWCNT sample. Interestingly, at around 360 K, the thermal conductivity first increases with increasing characteristic length and then saturates to a finite constant value at a characteristic length of ∼10 μm. These experimental results provide a fundamental understanding of the phonon transport characteristics in suspended, pristine SWCNTs.
doi_str_mv 10.1039/c6nr06901k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880031318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880031318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-2ae0f9013a53325807a44ffebc76798b82245bd8b1507f0a7a298515b9fb596b3</originalsourceid><addsrcrecordid>eNqNkctOwzAQRS0EoqWw4QOQlwgR8CNxnCVEvERVJChiGTnxmIYmTokdpP496YOuWc3VzNFo5l6ETim5ooQn14WwLREJofM9NGQkJAHnMdvfaREO0JFzX6SHuOCHaMAkETGXdIjgFmwxq1U7x853eokbg_0McAX208-whgVYDdavmm2tKlw0VneFL39Kv4ZLq3utu37kOrem9SVetKXzpQX89pFOpu4YHRhVOTjZ1hF6v7-bpo_B-OXhKb0ZBwWXwgdMATH9H1xFnLNIkliFoTGQF7GIE5lLxsIo1zKnEYkNUbFiiYxolCcmjxKR8xE63-xdtM13B85ndekKqCploelcRqUkhFNO5T_QSEghaH_JCF1s0KJtnGvBZP17vWXLjJJslUCWisnrOoHnHj7b7u3yGvQO_bOc_wK15oEE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1856866153</pqid></control><display><type>article</type><title>Benchmark study of the length dependent thermal conductivity of individual suspended, pristine SWCNTs</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Liu, Jinhui ; Li, Tianyi ; Hu, Yudong ; Zhang, Xing</creator><creatorcontrib>Liu, Jinhui ; Li, Tianyi ; Hu, Yudong ; Zhang, Xing</creatorcontrib><description>The thermal conductivity of individual suspended single-walled carbon nanotubes (SWCNTs) has been theoretically predicated to increase with length but this has never been verified experimentally. This then leads to the question of whether the thermal conductivity saturates to a finite constant value in ultra-long SWCNTs. This paper reports on experimental measurements of the thermal conductivity of individual suspended SWCNTs as a function of the characteristic thermal transport length using the same individual suspended SWCNT sample. Interestingly, at around 360 K, the thermal conductivity first increases with increasing characteristic length and then saturates to a finite constant value at a characteristic length of ∼10 μm. These experimental results provide a fundamental understanding of the phonon transport characteristics in suspended, pristine SWCNTs.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c6nr06901k</identifier><identifier>PMID: 28067381</identifier><language>eng</language><publisher>England</publisher><subject>Benchmarking ; Constants ; Heat transfer ; Mathematical analysis ; Nanostructure ; Single wall carbon nanotubes ; Thermal conductivity ; Transport</subject><ispartof>Nanoscale, 2017-01, Vol.9 (4), p.1496-1501</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-2ae0f9013a53325807a44ffebc76798b82245bd8b1507f0a7a298515b9fb596b3</citedby><cites>FETCH-LOGICAL-c386t-2ae0f9013a53325807a44ffebc76798b82245bd8b1507f0a7a298515b9fb596b3</cites><orcidid>0000-0003-2094-0932</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28067381$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Jinhui</creatorcontrib><creatorcontrib>Li, Tianyi</creatorcontrib><creatorcontrib>Hu, Yudong</creatorcontrib><creatorcontrib>Zhang, Xing</creatorcontrib><title>Benchmark study of the length dependent thermal conductivity of individual suspended, pristine SWCNTs</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>The thermal conductivity of individual suspended single-walled carbon nanotubes (SWCNTs) has been theoretically predicated to increase with length but this has never been verified experimentally. This then leads to the question of whether the thermal conductivity saturates to a finite constant value in ultra-long SWCNTs. This paper reports on experimental measurements of the thermal conductivity of individual suspended SWCNTs as a function of the characteristic thermal transport length using the same individual suspended SWCNT sample. Interestingly, at around 360 K, the thermal conductivity first increases with increasing characteristic length and then saturates to a finite constant value at a characteristic length of ∼10 μm. These experimental results provide a fundamental understanding of the phonon transport characteristics in suspended, pristine SWCNTs.</description><subject>Benchmarking</subject><subject>Constants</subject><subject>Heat transfer</subject><subject>Mathematical analysis</subject><subject>Nanostructure</subject><subject>Single wall carbon nanotubes</subject><subject>Thermal conductivity</subject><subject>Transport</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkctOwzAQRS0EoqWw4QOQlwgR8CNxnCVEvERVJChiGTnxmIYmTokdpP496YOuWc3VzNFo5l6ETim5ooQn14WwLREJofM9NGQkJAHnMdvfaREO0JFzX6SHuOCHaMAkETGXdIjgFmwxq1U7x853eokbg_0McAX208-whgVYDdavmm2tKlw0VneFL39Kv4ZLq3utu37kOrem9SVetKXzpQX89pFOpu4YHRhVOTjZ1hF6v7-bpo_B-OXhKb0ZBwWXwgdMATH9H1xFnLNIkliFoTGQF7GIE5lLxsIo1zKnEYkNUbFiiYxolCcmjxKR8xE63-xdtM13B85ndekKqCploelcRqUkhFNO5T_QSEghaH_JCF1s0KJtnGvBZP17vWXLjJJslUCWisnrOoHnHj7b7u3yGvQO_bOc_wK15oEE</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Liu, Jinhui</creator><creator>Li, Tianyi</creator><creator>Hu, Yudong</creator><creator>Zhang, Xing</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2094-0932</orcidid></search><sort><creationdate>20170101</creationdate><title>Benchmark study of the length dependent thermal conductivity of individual suspended, pristine SWCNTs</title><author>Liu, Jinhui ; Li, Tianyi ; Hu, Yudong ; Zhang, Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-2ae0f9013a53325807a44ffebc76798b82245bd8b1507f0a7a298515b9fb596b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Benchmarking</topic><topic>Constants</topic><topic>Heat transfer</topic><topic>Mathematical analysis</topic><topic>Nanostructure</topic><topic>Single wall carbon nanotubes</topic><topic>Thermal conductivity</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jinhui</creatorcontrib><creatorcontrib>Li, Tianyi</creatorcontrib><creatorcontrib>Hu, Yudong</creatorcontrib><creatorcontrib>Zhang, Xing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jinhui</au><au>Li, Tianyi</au><au>Hu, Yudong</au><au>Zhang, Xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benchmark study of the length dependent thermal conductivity of individual suspended, pristine SWCNTs</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>9</volume><issue>4</issue><spage>1496</spage><epage>1501</epage><pages>1496-1501</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>The thermal conductivity of individual suspended single-walled carbon nanotubes (SWCNTs) has been theoretically predicated to increase with length but this has never been verified experimentally. This then leads to the question of whether the thermal conductivity saturates to a finite constant value in ultra-long SWCNTs. This paper reports on experimental measurements of the thermal conductivity of individual suspended SWCNTs as a function of the characteristic thermal transport length using the same individual suspended SWCNT sample. Interestingly, at around 360 K, the thermal conductivity first increases with increasing characteristic length and then saturates to a finite constant value at a characteristic length of ∼10 μm. These experimental results provide a fundamental understanding of the phonon transport characteristics in suspended, pristine SWCNTs.</abstract><cop>England</cop><pmid>28067381</pmid><doi>10.1039/c6nr06901k</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2094-0932</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2017-01, Vol.9 (4), p.1496-1501
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_1880031318
source Royal Society Of Chemistry Journals 2008-
subjects Benchmarking
Constants
Heat transfer
Mathematical analysis
Nanostructure
Single wall carbon nanotubes
Thermal conductivity
Transport
title Benchmark study of the length dependent thermal conductivity of individual suspended, pristine SWCNTs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A19%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benchmark%20study%20of%20the%20length%20dependent%20thermal%20conductivity%20of%20individual%20suspended,%20pristine%20SWCNTs&rft.jtitle=Nanoscale&rft.au=Liu,%20Jinhui&rft.date=2017-01-01&rft.volume=9&rft.issue=4&rft.spage=1496&rft.epage=1501&rft.pages=1496-1501&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c6nr06901k&rft_dat=%3Cproquest_cross%3E1880031318%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1856866153&rft_id=info:pmid/28067381&rfr_iscdi=true