Design and analysis of codes with distance 4 and 6 minimizing the probability of decoder error

The problem of minimization of the decoder error probability is considered for shortened codes of dimension 2 m with distance 4 and 6. We prove that shortened Panchenko codes with distance 4 achieve the minimal probability of decoder error under special form of shortening. This shows that Hamming co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of communications technology & electronics 2016-12, Vol.61 (12), p.1440-1455
Hauptverfasser: Afanassiev, V. B., Davydov, A. A., Zigangirov, D. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1455
container_issue 12
container_start_page 1440
container_title Journal of communications technology & electronics
container_volume 61
creator Afanassiev, V. B.
Davydov, A. A.
Zigangirov, D. K.
description The problem of minimization of the decoder error probability is considered for shortened codes of dimension 2 m with distance 4 and 6. We prove that shortened Panchenko codes with distance 4 achieve the minimal probability of decoder error under special form of shortening. This shows that Hamming codes are not the best. In the paper, the rules for shortening Panchenko codes are defined and a combinatorial method to minimize the number of words of weight 4 and 5 is developed. There are obtained exact lower bounds on the probability of decoder error and the full solution of the problem of minimization of the decoder error probability for [39,32,4] and [72,64,4] codes. For shortened BCH codes with distance 6, upper and lower bounds on the number of minimal weight codewords are derived. There are constructed [45,32,6] and [79,64,6] BCH codes with the number of weight 6 codewords close to the lower bound and the decoder error probabilities are calculated for these codes. The results are intended for use in memory devices.
doi_str_mv 10.1134/S1064226916120020
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880029321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A496568111</galeid><sourcerecordid>A496568111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-e5218ac20005fa466e3d029f5e614592f8ca42b4a22e848e4ce52cf518547e963</originalsourceid><addsrcrecordid>eNp1kd9r1TAUgIs4cG7-Ab4FfFFYZ5Imue3j2KYOBoLTV0tuetqb0SYzJ0Wvf72n1oddRUJ-kHzf4Zycongp-LkQlXp7J7hRUppGGCE5l_xJcSy01qXRevOUzvRcLu_PiueI95xXjeHVcfH1CtAPgdnQ0bTjHj2y2DMXO0D23ecd6zxmGxww9ZsybPLBT_6nDwPLO2APKW7t1o8-7xezg8VNDFKK6bQ46u2I8OLPflJ8eXf9-fJDefvx_c3lxW3plG5yCVqK2jpKnOveKmOg6rhseg1GECD72lklt8pKCbWqQTkyXK9FrdUGGlOdFK_XuJTMtxkwt5NHB-NoA8QZW1HX9ClNJQWhr_5C7-OcqPSF0kpvuFSKqPOVGuwIrQ99zMk6Gh1M3sUAvaf7C9UYbWohlrBvDgRiMvzIg50R25u7T4fs2SN2O6MPgLRQJ3YZV-UAFyvuUkRM0LcPyU827VvB26X77T_dJ0euDhIbBkiPqvyv9AvEsq1n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1854570244</pqid></control><display><type>article</type><title>Design and analysis of codes with distance 4 and 6 minimizing the probability of decoder error</title><source>SpringerLink Journals</source><creator>Afanassiev, V. B. ; Davydov, A. A. ; Zigangirov, D. K.</creator><creatorcontrib>Afanassiev, V. B. ; Davydov, A. A. ; Zigangirov, D. K.</creatorcontrib><description>The problem of minimization of the decoder error probability is considered for shortened codes of dimension 2 m with distance 4 and 6. We prove that shortened Panchenko codes with distance 4 achieve the minimal probability of decoder error under special form of shortening. This shows that Hamming codes are not the best. In the paper, the rules for shortening Panchenko codes are defined and a combinatorial method to minimize the number of words of weight 4 and 5 is developed. There are obtained exact lower bounds on the probability of decoder error and the full solution of the problem of minimization of the decoder error probability for [39,32,4] and [72,64,4] codes. For shortened BCH codes with distance 6, upper and lower bounds on the number of minimal weight codewords are derived. There are constructed [45,32,6] and [79,64,6] BCH codes with the number of weight 6 codewords close to the lower bound and the decoder error probabilities are calculated for these codes. The results are intended for use in memory devices.</description><identifier>ISSN: 1064-2269</identifier><identifier>EISSN: 1555-6557</identifier><identifier>DOI: 10.1134/S1064226916120020</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Analysis ; BCH codes ; Codes ; Coding theory ; Communications Engineering ; Computer memory ; Computer programming ; Data storage ; Decoders ; Engineering ; Error correction &amp; detection ; Errors ; Linear codes ; Lower bounds ; Memory devices ; Minimization ; Networks ; Optimization ; Probability ; Random access memory ; Studies ; Theory and Methods of Information Processing</subject><ispartof>Journal of communications technology &amp; electronics, 2016-12, Vol.61 (12), p.1440-1455</ispartof><rights>Pleiades Publishing, Inc. 2016</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Journal of Communications Technology and Electronics is a copyright of Springer, 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-e5218ac20005fa466e3d029f5e614592f8ca42b4a22e848e4ce52cf518547e963</citedby><cites>FETCH-LOGICAL-c459t-e5218ac20005fa466e3d029f5e614592f8ca42b4a22e848e4ce52cf518547e963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1064226916120020$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1064226916120020$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Afanassiev, V. B.</creatorcontrib><creatorcontrib>Davydov, A. A.</creatorcontrib><creatorcontrib>Zigangirov, D. K.</creatorcontrib><title>Design and analysis of codes with distance 4 and 6 minimizing the probability of decoder error</title><title>Journal of communications technology &amp; electronics</title><addtitle>J. Commun. Technol. Electron</addtitle><description>The problem of minimization of the decoder error probability is considered for shortened codes of dimension 2 m with distance 4 and 6. We prove that shortened Panchenko codes with distance 4 achieve the minimal probability of decoder error under special form of shortening. This shows that Hamming codes are not the best. In the paper, the rules for shortening Panchenko codes are defined and a combinatorial method to minimize the number of words of weight 4 and 5 is developed. There are obtained exact lower bounds on the probability of decoder error and the full solution of the problem of minimization of the decoder error probability for [39,32,4] and [72,64,4] codes. For shortened BCH codes with distance 6, upper and lower bounds on the number of minimal weight codewords are derived. There are constructed [45,32,6] and [79,64,6] BCH codes with the number of weight 6 codewords close to the lower bound and the decoder error probabilities are calculated for these codes. The results are intended for use in memory devices.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>BCH codes</subject><subject>Codes</subject><subject>Coding theory</subject><subject>Communications Engineering</subject><subject>Computer memory</subject><subject>Computer programming</subject><subject>Data storage</subject><subject>Decoders</subject><subject>Engineering</subject><subject>Error correction &amp; detection</subject><subject>Errors</subject><subject>Linear codes</subject><subject>Lower bounds</subject><subject>Memory devices</subject><subject>Minimization</subject><subject>Networks</subject><subject>Optimization</subject><subject>Probability</subject><subject>Random access memory</subject><subject>Studies</subject><subject>Theory and Methods of Information Processing</subject><issn>1064-2269</issn><issn>1555-6557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kd9r1TAUgIs4cG7-Ab4FfFFYZ5Imue3j2KYOBoLTV0tuetqb0SYzJ0Wvf72n1oddRUJ-kHzf4Zycongp-LkQlXp7J7hRUppGGCE5l_xJcSy01qXRevOUzvRcLu_PiueI95xXjeHVcfH1CtAPgdnQ0bTjHj2y2DMXO0D23ecd6zxmGxww9ZsybPLBT_6nDwPLO2APKW7t1o8-7xezg8VNDFKK6bQ46u2I8OLPflJ8eXf9-fJDefvx_c3lxW3plG5yCVqK2jpKnOveKmOg6rhseg1GECD72lklt8pKCbWqQTkyXK9FrdUGGlOdFK_XuJTMtxkwt5NHB-NoA8QZW1HX9ClNJQWhr_5C7-OcqPSF0kpvuFSKqPOVGuwIrQ99zMk6Gh1M3sUAvaf7C9UYbWohlrBvDgRiMvzIg50R25u7T4fs2SN2O6MPgLRQJ3YZV-UAFyvuUkRM0LcPyU827VvB26X77T_dJ0euDhIbBkiPqvyv9AvEsq1n</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Afanassiev, V. B.</creator><creator>Davydov, A. A.</creator><creator>Zigangirov, D. K.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>3V.</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>88K</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L7M</scope><scope>M0C</scope><scope>M2P</scope><scope>M2T</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20161201</creationdate><title>Design and analysis of codes with distance 4 and 6 minimizing the probability of decoder error</title><author>Afanassiev, V. B. ; Davydov, A. A. ; Zigangirov, D. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-e5218ac20005fa466e3d029f5e614592f8ca42b4a22e848e4ce52cf518547e963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>BCH codes</topic><topic>Codes</topic><topic>Coding theory</topic><topic>Communications Engineering</topic><topic>Computer memory</topic><topic>Computer programming</topic><topic>Data storage</topic><topic>Decoders</topic><topic>Engineering</topic><topic>Error correction &amp; detection</topic><topic>Errors</topic><topic>Linear codes</topic><topic>Lower bounds</topic><topic>Memory devices</topic><topic>Minimization</topic><topic>Networks</topic><topic>Optimization</topic><topic>Probability</topic><topic>Random access memory</topic><topic>Studies</topic><topic>Theory and Methods of Information Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Afanassiev, V. B.</creatorcontrib><creatorcontrib>Davydov, A. A.</creatorcontrib><creatorcontrib>Zigangirov, D. K.</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of communications technology &amp; electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Afanassiev, V. B.</au><au>Davydov, A. A.</au><au>Zigangirov, D. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and analysis of codes with distance 4 and 6 minimizing the probability of decoder error</atitle><jtitle>Journal of communications technology &amp; electronics</jtitle><stitle>J. Commun. Technol. Electron</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>61</volume><issue>12</issue><spage>1440</spage><epage>1455</epage><pages>1440-1455</pages><issn>1064-2269</issn><eissn>1555-6557</eissn><abstract>The problem of minimization of the decoder error probability is considered for shortened codes of dimension 2 m with distance 4 and 6. We prove that shortened Panchenko codes with distance 4 achieve the minimal probability of decoder error under special form of shortening. This shows that Hamming codes are not the best. In the paper, the rules for shortening Panchenko codes are defined and a combinatorial method to minimize the number of words of weight 4 and 5 is developed. There are obtained exact lower bounds on the probability of decoder error and the full solution of the problem of minimization of the decoder error probability for [39,32,4] and [72,64,4] codes. For shortened BCH codes with distance 6, upper and lower bounds on the number of minimal weight codewords are derived. There are constructed [45,32,6] and [79,64,6] BCH codes with the number of weight 6 codewords close to the lower bound and the decoder error probabilities are calculated for these codes. The results are intended for use in memory devices.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1064226916120020</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-2269
ispartof Journal of communications technology & electronics, 2016-12, Vol.61 (12), p.1440-1455
issn 1064-2269
1555-6557
language eng
recordid cdi_proquest_miscellaneous_1880029321
source SpringerLink Journals
subjects Algorithms
Analysis
BCH codes
Codes
Coding theory
Communications Engineering
Computer memory
Computer programming
Data storage
Decoders
Engineering
Error correction & detection
Errors
Linear codes
Lower bounds
Memory devices
Minimization
Networks
Optimization
Probability
Random access memory
Studies
Theory and Methods of Information Processing
title Design and analysis of codes with distance 4 and 6 minimizing the probability of decoder error
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A17%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20analysis%20of%20codes%20with%20distance%204%20and%206%20minimizing%20the%20probability%20of%20decoder%20error&rft.jtitle=Journal%20of%20communications%20technology%20&%20electronics&rft.au=Afanassiev,%20V.%20B.&rft.date=2016-12-01&rft.volume=61&rft.issue=12&rft.spage=1440&rft.epage=1455&rft.pages=1440-1455&rft.issn=1064-2269&rft.eissn=1555-6557&rft_id=info:doi/10.1134/S1064226916120020&rft_dat=%3Cgale_proqu%3EA496568111%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1854570244&rft_id=info:pmid/&rft_galeid=A496568111&rfr_iscdi=true