Tunable skewed edges in puckered structures
We propose a type of edges arising due to the anisotropy inherent in the puckered structure of a honeycomb system such as in phosphorene. Skewed-zigzag and skewed-armchair nanoribbons are semiconducting and metallic, respectively, in contrast to their normal edge counterparts. Their band structures...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2016-06, Vol.93 (24), Article 245413 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | |
container_title | Physical review. B |
container_volume | 93 |
creator | Grujić, Marko M. Ezawa, Motohiko Tadić, Milan Ž. Peeters, François M. |
description | We propose a type of edges arising due to the anisotropy inherent in the puckered structure of a honeycomb system such as in phosphorene. Skewed-zigzag and skewed-armchair nanoribbons are semiconducting and metallic, respectively, in contrast to their normal edge counterparts. Their band structures are tunable, and a metal-insulator transition is induced by an electric field. We predict a field-effect transistor based on the edge states in skewed-armchair nanoribbons, where the edge state is gapped by applying arbitrary small electric field E sub(z). A topological argument is presented, revealing the condition for the emergence of such edge states. |
doi_str_mv | 10.1103/PhysRevB.93.245413 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880028546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880028546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-7e2edafc75886599ba94b2c27a2cf73ee58081e6b17ed95511ecee7a83bb70f13</originalsourceid><addsrcrecordid>eNo9kE1Lw0AURQdRsNT-AVdZCpL6ZibztdSiVSgoUtfDZPKitWla5yVK_72VqKt7uRzu4jB2zmHKOcirp7c9PePnzdTJqShUweURG4lCu9w57Y7_u4JTNiF6BwCuwRlwI3a57NtQNpjRGr-wyrB6RcpWbbbr4xrTYaEu9bHrE9IZO6lDQzj5zTF7ubtdzu7zxeP8YXa9yKOw0OUGBVahjkZZq5VzZXBFKaIwQcTaSERlwXLUJTdYOaU4x4hogpVlaaDmcswuht9d2n70SJ3frChi04QWtz15bi2AsKrQB1QMaExbooS136XVJqS95-B_5Pg_Od5JP8iR394yWTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880028546</pqid></control><display><type>article</type><title>Tunable skewed edges in puckered structures</title><source>American Physical Society Journals</source><creator>Grujić, Marko M. ; Ezawa, Motohiko ; Tadić, Milan Ž. ; Peeters, François M.</creator><creatorcontrib>Grujić, Marko M. ; Ezawa, Motohiko ; Tadić, Milan Ž. ; Peeters, François M.</creatorcontrib><description>We propose a type of edges arising due to the anisotropy inherent in the puckered structure of a honeycomb system such as in phosphorene. Skewed-zigzag and skewed-armchair nanoribbons are semiconducting and metallic, respectively, in contrast to their normal edge counterparts. Their band structures are tunable, and a metal-insulator transition is induced by an electric field. We predict a field-effect transistor based on the edge states in skewed-armchair nanoribbons, where the edge state is gapped by applying arbitrary small electric field E sub(z). A topological argument is presented, revealing the condition for the emergence of such edge states.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.93.245413</identifier><language>eng</language><subject>Band structure of solids ; Condensed matter ; Electric fields ; Field effect transistors ; Honeycomb ; Metal-insulator transition ; Nanostructure ; Topology</subject><ispartof>Physical review. B, 2016-06, Vol.93 (24), Article 245413</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-7e2edafc75886599ba94b2c27a2cf73ee58081e6b17ed95511ecee7a83bb70f13</citedby><cites>FETCH-LOGICAL-c280t-7e2edafc75886599ba94b2c27a2cf73ee58081e6b17ed95511ecee7a83bb70f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Grujić, Marko M.</creatorcontrib><creatorcontrib>Ezawa, Motohiko</creatorcontrib><creatorcontrib>Tadić, Milan Ž.</creatorcontrib><creatorcontrib>Peeters, François M.</creatorcontrib><title>Tunable skewed edges in puckered structures</title><title>Physical review. B</title><description>We propose a type of edges arising due to the anisotropy inherent in the puckered structure of a honeycomb system such as in phosphorene. Skewed-zigzag and skewed-armchair nanoribbons are semiconducting and metallic, respectively, in contrast to their normal edge counterparts. Their band structures are tunable, and a metal-insulator transition is induced by an electric field. We predict a field-effect transistor based on the edge states in skewed-armchair nanoribbons, where the edge state is gapped by applying arbitrary small electric field E sub(z). A topological argument is presented, revealing the condition for the emergence of such edge states.</description><subject>Band structure of solids</subject><subject>Condensed matter</subject><subject>Electric fields</subject><subject>Field effect transistors</subject><subject>Honeycomb</subject><subject>Metal-insulator transition</subject><subject>Nanostructure</subject><subject>Topology</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AURQdRsNT-AVdZCpL6ZibztdSiVSgoUtfDZPKitWla5yVK_72VqKt7uRzu4jB2zmHKOcirp7c9PePnzdTJqShUweURG4lCu9w57Y7_u4JTNiF6BwCuwRlwI3a57NtQNpjRGr-wyrB6RcpWbbbr4xrTYaEu9bHrE9IZO6lDQzj5zTF7ubtdzu7zxeP8YXa9yKOw0OUGBVahjkZZq5VzZXBFKaIwQcTaSERlwXLUJTdYOaU4x4hogpVlaaDmcswuht9d2n70SJ3frChi04QWtz15bi2AsKrQB1QMaExbooS136XVJqS95-B_5Pg_Od5JP8iR394yWTA</recordid><startdate>20160615</startdate><enddate>20160615</enddate><creator>Grujić, Marko M.</creator><creator>Ezawa, Motohiko</creator><creator>Tadić, Milan Ž.</creator><creator>Peeters, François M.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160615</creationdate><title>Tunable skewed edges in puckered structures</title><author>Grujić, Marko M. ; Ezawa, Motohiko ; Tadić, Milan Ž. ; Peeters, François M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-7e2edafc75886599ba94b2c27a2cf73ee58081e6b17ed95511ecee7a83bb70f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Band structure of solids</topic><topic>Condensed matter</topic><topic>Electric fields</topic><topic>Field effect transistors</topic><topic>Honeycomb</topic><topic>Metal-insulator transition</topic><topic>Nanostructure</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grujić, Marko M.</creatorcontrib><creatorcontrib>Ezawa, Motohiko</creatorcontrib><creatorcontrib>Tadić, Milan Ž.</creatorcontrib><creatorcontrib>Peeters, François M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grujić, Marko M.</au><au>Ezawa, Motohiko</au><au>Tadić, Milan Ž.</au><au>Peeters, François M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable skewed edges in puckered structures</atitle><jtitle>Physical review. B</jtitle><date>2016-06-15</date><risdate>2016</risdate><volume>93</volume><issue>24</issue><artnum>245413</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We propose a type of edges arising due to the anisotropy inherent in the puckered structure of a honeycomb system such as in phosphorene. Skewed-zigzag and skewed-armchair nanoribbons are semiconducting and metallic, respectively, in contrast to their normal edge counterparts. Their band structures are tunable, and a metal-insulator transition is induced by an electric field. We predict a field-effect transistor based on the edge states in skewed-armchair nanoribbons, where the edge state is gapped by applying arbitrary small electric field E sub(z). A topological argument is presented, revealing the condition for the emergence of such edge states.</abstract><doi>10.1103/PhysRevB.93.245413</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2016-06, Vol.93 (24), Article 245413 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_miscellaneous_1880028546 |
source | American Physical Society Journals |
subjects | Band structure of solids Condensed matter Electric fields Field effect transistors Honeycomb Metal-insulator transition Nanostructure Topology |
title | Tunable skewed edges in puckered structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A22%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20skewed%20edges%20in%20puckered%20structures&rft.jtitle=Physical%20review.%20B&rft.au=Gruji%C4%87,%20Marko%20M.&rft.date=2016-06-15&rft.volume=93&rft.issue=24&rft.artnum=245413&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.93.245413&rft_dat=%3Cproquest_cross%3E1880028546%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880028546&rft_id=info:pmid/&rfr_iscdi=true |