Hydrodynamic Analysis Resolves the Pharmaceutically-Relevant Absolute Molar Mass and Solution Properties of Synthetic Poly(ethylene glycol)s Created by Varying Initiation Sites

The solution behavior originating from molecular characteristics of synthetic macromolecules plays a pivotal role in many areas, in particular the life sciences. This situation necessitates the use of complementary hydrodynamic analytical methods as the only means for a complete structural understan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2017-01, Vol.89 (2), p.1185-1193
Hauptverfasser: Nischang, Ivo, Perevyazko, Igor, Majdanski, Tobias, Vitz, Jürgen, Festag, Grit, Schubert, Ulrich S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1193
container_issue 2
container_start_page 1185
container_title Analytical chemistry (Washington)
container_volume 89
creator Nischang, Ivo
Perevyazko, Igor
Majdanski, Tobias
Vitz, Jürgen
Festag, Grit
Schubert, Ulrich S
description The solution behavior originating from molecular characteristics of synthetic macromolecules plays a pivotal role in many areas, in particular the life sciences. This situation necessitates the use of complementary hydrodynamic analytical methods as the only means for a complete structural understanding of any macromolecule in solution. To this end, we present a combined hydrodynamic approach for studying in-house prepared, low dispersity poly­(ethylene glycols)­s (PEGs), also known as poly­(ethylene oxide)­s (PEOs) depending on the classification used, synthesized from varying initiation sites by the living anionic ring opening polymerization. The series of linear PEGs in the molar mass range of only a few thousand to 50 000 g mol–1 have been studied in detail via viscometry and sedimentation-diffusion analysis by analytical ultracentrifugation. The obtained estimations for intrinsic viscosity, diffusion coefficients, and sedimentation coefficients of the macromolecules in the solution-based analysis clearly showed self-consistency of the followed hydrodynamic approach. This self-consistency is underpinned by appropriate and physically sound values of hydrodynamic invariants, indicating adequate values of derived absolute molar masses. The classical scaling relations of Kuhn–Mark–Houwink–Sakurada of all molar-mass dependent hydrodynamic estimates show linear trends, allowing for interrelation of all parametric macromolecular characteristics. Differences among these are ascribed to the observation of α-end and chain-length dependent solvation of the macromolecules, identified from viscometric studies. This important information allows for analytical tracing of variations of scaling relationships and a physically sound estimation of hydrodynamic characteristics. The demonstrated self-sufficient methodology paves an important way for a complete structural understanding and potential replacement of pharmaceutically relevant PEGs by alternative macromolecules offering a suite of similar or tractably distinct physicochemical properties.
doi_str_mv 10.1021/acs.analchem.6b03615
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880028020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1852659482</sourcerecordid><originalsourceid>FETCH-LOGICAL-a409t-5b56962ce2ffae49258ae29ba9fa61aa5b24119095dfc541b3589c07696f28413</originalsourceid><addsrcrecordid>eNqNkcGO0zAQhiMEYsvCGyBkictySBk7sRsfqwrYlXZFtQWu0SSZbL1y42I7K-WteERc2gWJA-I00uj7v5Hmz7LXHOYcBH-PbZjjgLbd0m6uGigUl0-yGZcCclVV4mk2A4AiFwuAs-xFCPcAnANXz7MzsdCFUiBn2Y_LqfOumwbcmZYtk28KJrBbCs4-UGBxS2y9Rb_DlsZoWrR2ym_J0gMOkS2bhI2R2I2z6NkNhsBw6NjmsDVuYGvv9uSjSSbXs800JF-ysLWz0wXF7WRpIHZnp9bZd4GtPGGkjjUT-4Z-MsMduxpMNPhLtjGRwsvsWY820KvTPM--fvzwZXWZX3_-dLVaXudYgo65bKTSSrQk-h6p1EJWSEI3qHtUHFE2ouRcg5Zd38qSN4WsdAuLFOpFVfLiPLs4evfefR8pxHpnQkvW4kBuDDWvKgBRgYD_QKVQUpeVSOjbv9B7N_r09QOlADQvVJmo8ki13oXgqa_33uzSQ2oO9aH8OpVfP5Zfn8pPsTcn-djsqPsdemw7AXAEDvE_h__l_AnlPsEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1860091364</pqid></control><display><type>article</type><title>Hydrodynamic Analysis Resolves the Pharmaceutically-Relevant Absolute Molar Mass and Solution Properties of Synthetic Poly(ethylene glycol)s Created by Varying Initiation Sites</title><source>MEDLINE</source><source>ACS Publications</source><creator>Nischang, Ivo ; Perevyazko, Igor ; Majdanski, Tobias ; Vitz, Jürgen ; Festag, Grit ; Schubert, Ulrich S</creator><creatorcontrib>Nischang, Ivo ; Perevyazko, Igor ; Majdanski, Tobias ; Vitz, Jürgen ; Festag, Grit ; Schubert, Ulrich S</creatorcontrib><description>The solution behavior originating from molecular characteristics of synthetic macromolecules plays a pivotal role in many areas, in particular the life sciences. This situation necessitates the use of complementary hydrodynamic analytical methods as the only means for a complete structural understanding of any macromolecule in solution. To this end, we present a combined hydrodynamic approach for studying in-house prepared, low dispersity poly­(ethylene glycols)­s (PEGs), also known as poly­(ethylene oxide)­s (PEOs) depending on the classification used, synthesized from varying initiation sites by the living anionic ring opening polymerization. The series of linear PEGs in the molar mass range of only a few thousand to 50 000 g mol–1 have been studied in detail via viscometry and sedimentation-diffusion analysis by analytical ultracentrifugation. The obtained estimations for intrinsic viscosity, diffusion coefficients, and sedimentation coefficients of the macromolecules in the solution-based analysis clearly showed self-consistency of the followed hydrodynamic approach. This self-consistency is underpinned by appropriate and physically sound values of hydrodynamic invariants, indicating adequate values of derived absolute molar masses. The classical scaling relations of Kuhn–Mark–Houwink–Sakurada of all molar-mass dependent hydrodynamic estimates show linear trends, allowing for interrelation of all parametric macromolecular characteristics. Differences among these are ascribed to the observation of α-end and chain-length dependent solvation of the macromolecules, identified from viscometric studies. This important information allows for analytical tracing of variations of scaling relationships and a physically sound estimation of hydrodynamic characteristics. The demonstrated self-sufficient methodology paves an important way for a complete structural understanding and potential replacement of pharmaceutically relevant PEGs by alternative macromolecules offering a suite of similar or tractably distinct physicochemical properties.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.6b03615</identifier><identifier>PMID: 27936605</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Anions - chemistry ; Antifreeze solutions ; Chromatography, Gel ; Computational fluid dynamics ; Diffusion ; Fluid flow ; Fluid mechanics ; Hydrodynamics ; Macromolecules ; Mathematical analysis ; Molecular Weight ; Molecules ; Pharmaceuticals ; Polyethylene Glycols - chemistry ; Polymerization ; Scaling ; Sedimentation ; Solutions ; Sound ; Ultracentrifugation ; Viscosity</subject><ispartof>Analytical chemistry (Washington), 2017-01, Vol.89 (2), p.1185-1193</ispartof><rights>Copyright © 2016 American Chemical Society</rights><rights>Copyright American Chemical Society Jan 17, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a409t-5b56962ce2ffae49258ae29ba9fa61aa5b24119095dfc541b3589c07696f28413</citedby><cites>FETCH-LOGICAL-a409t-5b56962ce2ffae49258ae29ba9fa61aa5b24119095dfc541b3589c07696f28413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.6b03615$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.6b03615$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27936605$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nischang, Ivo</creatorcontrib><creatorcontrib>Perevyazko, Igor</creatorcontrib><creatorcontrib>Majdanski, Tobias</creatorcontrib><creatorcontrib>Vitz, Jürgen</creatorcontrib><creatorcontrib>Festag, Grit</creatorcontrib><creatorcontrib>Schubert, Ulrich S</creatorcontrib><title>Hydrodynamic Analysis Resolves the Pharmaceutically-Relevant Absolute Molar Mass and Solution Properties of Synthetic Poly(ethylene glycol)s Created by Varying Initiation Sites</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>The solution behavior originating from molecular characteristics of synthetic macromolecules plays a pivotal role in many areas, in particular the life sciences. This situation necessitates the use of complementary hydrodynamic analytical methods as the only means for a complete structural understanding of any macromolecule in solution. To this end, we present a combined hydrodynamic approach for studying in-house prepared, low dispersity poly­(ethylene glycols)­s (PEGs), also known as poly­(ethylene oxide)­s (PEOs) depending on the classification used, synthesized from varying initiation sites by the living anionic ring opening polymerization. The series of linear PEGs in the molar mass range of only a few thousand to 50 000 g mol–1 have been studied in detail via viscometry and sedimentation-diffusion analysis by analytical ultracentrifugation. The obtained estimations for intrinsic viscosity, diffusion coefficients, and sedimentation coefficients of the macromolecules in the solution-based analysis clearly showed self-consistency of the followed hydrodynamic approach. This self-consistency is underpinned by appropriate and physically sound values of hydrodynamic invariants, indicating adequate values of derived absolute molar masses. The classical scaling relations of Kuhn–Mark–Houwink–Sakurada of all molar-mass dependent hydrodynamic estimates show linear trends, allowing for interrelation of all parametric macromolecular characteristics. Differences among these are ascribed to the observation of α-end and chain-length dependent solvation of the macromolecules, identified from viscometric studies. This important information allows for analytical tracing of variations of scaling relationships and a physically sound estimation of hydrodynamic characteristics. The demonstrated self-sufficient methodology paves an important way for a complete structural understanding and potential replacement of pharmaceutically relevant PEGs by alternative macromolecules offering a suite of similar or tractably distinct physicochemical properties.</description><subject>Anions - chemistry</subject><subject>Antifreeze solutions</subject><subject>Chromatography, Gel</subject><subject>Computational fluid dynamics</subject><subject>Diffusion</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Hydrodynamics</subject><subject>Macromolecules</subject><subject>Mathematical analysis</subject><subject>Molecular Weight</subject><subject>Molecules</subject><subject>Pharmaceuticals</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polymerization</subject><subject>Scaling</subject><subject>Sedimentation</subject><subject>Solutions</subject><subject>Sound</subject><subject>Ultracentrifugation</subject><subject>Viscosity</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcGO0zAQhiMEYsvCGyBkictySBk7sRsfqwrYlXZFtQWu0SSZbL1y42I7K-WteERc2gWJA-I00uj7v5Hmz7LXHOYcBH-PbZjjgLbd0m6uGigUl0-yGZcCclVV4mk2A4AiFwuAs-xFCPcAnANXz7MzsdCFUiBn2Y_LqfOumwbcmZYtk28KJrBbCs4-UGBxS2y9Rb_DlsZoWrR2ym_J0gMOkS2bhI2R2I2z6NkNhsBw6NjmsDVuYGvv9uSjSSbXs800JF-ysLWz0wXF7WRpIHZnp9bZd4GtPGGkjjUT-4Z-MsMduxpMNPhLtjGRwsvsWY820KvTPM--fvzwZXWZX3_-dLVaXudYgo65bKTSSrQk-h6p1EJWSEI3qHtUHFE2ouRcg5Zd38qSN4WsdAuLFOpFVfLiPLs4evfefR8pxHpnQkvW4kBuDDWvKgBRgYD_QKVQUpeVSOjbv9B7N_r09QOlADQvVJmo8ki13oXgqa_33uzSQ2oO9aH8OpVfP5Zfn8pPsTcn-djsqPsdemw7AXAEDvE_h__l_AnlPsEg</recordid><startdate>20170117</startdate><enddate>20170117</enddate><creator>Nischang, Ivo</creator><creator>Perevyazko, Igor</creator><creator>Majdanski, Tobias</creator><creator>Vitz, Jürgen</creator><creator>Festag, Grit</creator><creator>Schubert, Ulrich S</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20170117</creationdate><title>Hydrodynamic Analysis Resolves the Pharmaceutically-Relevant Absolute Molar Mass and Solution Properties of Synthetic Poly(ethylene glycol)s Created by Varying Initiation Sites</title><author>Nischang, Ivo ; Perevyazko, Igor ; Majdanski, Tobias ; Vitz, Jürgen ; Festag, Grit ; Schubert, Ulrich S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a409t-5b56962ce2ffae49258ae29ba9fa61aa5b24119095dfc541b3589c07696f28413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anions - chemistry</topic><topic>Antifreeze solutions</topic><topic>Chromatography, Gel</topic><topic>Computational fluid dynamics</topic><topic>Diffusion</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Hydrodynamics</topic><topic>Macromolecules</topic><topic>Mathematical analysis</topic><topic>Molecular Weight</topic><topic>Molecules</topic><topic>Pharmaceuticals</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polymerization</topic><topic>Scaling</topic><topic>Sedimentation</topic><topic>Solutions</topic><topic>Sound</topic><topic>Ultracentrifugation</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nischang, Ivo</creatorcontrib><creatorcontrib>Perevyazko, Igor</creatorcontrib><creatorcontrib>Majdanski, Tobias</creatorcontrib><creatorcontrib>Vitz, Jürgen</creatorcontrib><creatorcontrib>Festag, Grit</creatorcontrib><creatorcontrib>Schubert, Ulrich S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nischang, Ivo</au><au>Perevyazko, Igor</au><au>Majdanski, Tobias</au><au>Vitz, Jürgen</au><au>Festag, Grit</au><au>Schubert, Ulrich S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrodynamic Analysis Resolves the Pharmaceutically-Relevant Absolute Molar Mass and Solution Properties of Synthetic Poly(ethylene glycol)s Created by Varying Initiation Sites</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2017-01-17</date><risdate>2017</risdate><volume>89</volume><issue>2</issue><spage>1185</spage><epage>1193</epage><pages>1185-1193</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>The solution behavior originating from molecular characteristics of synthetic macromolecules plays a pivotal role in many areas, in particular the life sciences. This situation necessitates the use of complementary hydrodynamic analytical methods as the only means for a complete structural understanding of any macromolecule in solution. To this end, we present a combined hydrodynamic approach for studying in-house prepared, low dispersity poly­(ethylene glycols)­s (PEGs), also known as poly­(ethylene oxide)­s (PEOs) depending on the classification used, synthesized from varying initiation sites by the living anionic ring opening polymerization. The series of linear PEGs in the molar mass range of only a few thousand to 50 000 g mol–1 have been studied in detail via viscometry and sedimentation-diffusion analysis by analytical ultracentrifugation. The obtained estimations for intrinsic viscosity, diffusion coefficients, and sedimentation coefficients of the macromolecules in the solution-based analysis clearly showed self-consistency of the followed hydrodynamic approach. This self-consistency is underpinned by appropriate and physically sound values of hydrodynamic invariants, indicating adequate values of derived absolute molar masses. The classical scaling relations of Kuhn–Mark–Houwink–Sakurada of all molar-mass dependent hydrodynamic estimates show linear trends, allowing for interrelation of all parametric macromolecular characteristics. Differences among these are ascribed to the observation of α-end and chain-length dependent solvation of the macromolecules, identified from viscometric studies. This important information allows for analytical tracing of variations of scaling relationships and a physically sound estimation of hydrodynamic characteristics. The demonstrated self-sufficient methodology paves an important way for a complete structural understanding and potential replacement of pharmaceutically relevant PEGs by alternative macromolecules offering a suite of similar or tractably distinct physicochemical properties.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27936605</pmid><doi>10.1021/acs.analchem.6b03615</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2017-01, Vol.89 (2), p.1185-1193
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_1880028020
source MEDLINE; ACS Publications
subjects Anions - chemistry
Antifreeze solutions
Chromatography, Gel
Computational fluid dynamics
Diffusion
Fluid flow
Fluid mechanics
Hydrodynamics
Macromolecules
Mathematical analysis
Molecular Weight
Molecules
Pharmaceuticals
Polyethylene Glycols - chemistry
Polymerization
Scaling
Sedimentation
Solutions
Sound
Ultracentrifugation
Viscosity
title Hydrodynamic Analysis Resolves the Pharmaceutically-Relevant Absolute Molar Mass and Solution Properties of Synthetic Poly(ethylene glycol)s Created by Varying Initiation Sites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A32%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrodynamic%20Analysis%20Resolves%20the%20Pharmaceutically-Relevant%20Absolute%20Molar%20Mass%20and%20Solution%20Properties%20of%20Synthetic%20Poly(ethylene%20glycol)s%20Created%20by%20Varying%20Initiation%20Sites&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Nischang,%20Ivo&rft.date=2017-01-17&rft.volume=89&rft.issue=2&rft.spage=1185&rft.epage=1193&rft.pages=1185-1193&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/acs.analchem.6b03615&rft_dat=%3Cproquest_cross%3E1852659482%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1860091364&rft_id=info:pmid/27936605&rfr_iscdi=true