In situ SEM observation of microscale strain fields around a crack tip in polycrystalline molybdenum

In situ scanning electron microscopy was employed to investigate the crack initiation and propagation in polycrystalline molybdenum under uniaxial tensile load at room temperature. The microscale grid pattern was fabricated using the sputtering deposition technology on the specimen surface covered w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2016-06, Vol.122 (6), p.1-7, Article 573
Hauptverfasser: Li, J. J., Li, W. C., Jin, Y. J., Wang, L. F., Zhao, C. W., Xing, Y. M., Lang, F. C., Yan, L., Yang, S. T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 6
container_start_page 1
container_title Applied physics. A, Materials science & processing
container_volume 122
creator Li, J. J.
Li, W. C.
Jin, Y. J.
Wang, L. F.
Zhao, C. W.
Xing, Y. M.
Lang, F. C.
Yan, L.
Yang, S. T.
description In situ scanning electron microscopy was employed to investigate the crack initiation and propagation in polycrystalline molybdenum under uniaxial tensile load at room temperature. The microscale grid pattern was fabricated using the sputtering deposition technology on the specimen surface covered with a fine square mesh copper grid. The microscale strain fields around the crack tip were measured by geometric phase analysis technique and compared with the theoretical solutions based on the linear elastic fracture mechanics theory. The results showed that as the displacement increases, the crack propagated mainly perpendicular to the tensile direction during the fracture process of molybdenum. The normal strain ε xx and shear strain ε xy are relatively small, and the normal strain ε yy holds a dominant position in the deformation fields and plays a key role in the whole fracture process of molybdenum. With the increase in displacement, the ε yy increases rapidly and the two lobes grow significantly but maintain the same shape and orientation. The experimental ε yy is in agreement with the theoretical solution. Along the x -axis in front of the crack tip, there is minor discrepancy between the experimental ε yy and theoretical ε yy within 25 μm from the crack tip, but the agreement between them is very good far from the crack tip (>25 μm).
doi_str_mv 10.1007/s00339-016-0098-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880026356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880026356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-7dbba77b15a24d4f6742bb07840b2b4bdac382b4f132894d01239f250e0117063</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG85eqlO_mzTHmVZdUHxoJ5D0qSStU1q0gr77U2pZ-cyM8x7A--H0DWBWwIg7hIAY3UBpCwA6qrgJ2hFOKMFlAxO0QpqLoqK1eU5ukjpALk4pStk9h4nN074bfeCg042_qjRBY9Di3vXxJAa1Vmcxqicx62znUlYxTB5gxVuomq-8OgGnI9D6I5NPKZRdZ3zFvd518b6qb9EZ63qkr3662v08bB73z4Vz6-P--39c9EwSsZCGK2VEJpsFOWGt6XgVGsQFQdNNddGNazKQ0sYrWpugFBWt3QDFggROega3Sx_hxi-J5tG2bvU2K5T3oYpSVJVALRkm1lKFukcMUXbyiG6XsWjJCBnonIhKjNROROVPHvo4klZ6z9tlIcwRZ8T_WP6BeQpeTY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880026356</pqid></control><display><type>article</type><title>In situ SEM observation of microscale strain fields around a crack tip in polycrystalline molybdenum</title><source>Springer Nature - Complete Springer Journals</source><creator>Li, J. J. ; Li, W. C. ; Jin, Y. J. ; Wang, L. F. ; Zhao, C. W. ; Xing, Y. M. ; Lang, F. C. ; Yan, L. ; Yang, S. T.</creator><creatorcontrib>Li, J. J. ; Li, W. C. ; Jin, Y. J. ; Wang, L. F. ; Zhao, C. W. ; Xing, Y. M. ; Lang, F. C. ; Yan, L. ; Yang, S. T.</creatorcontrib><description>In situ scanning electron microscopy was employed to investigate the crack initiation and propagation in polycrystalline molybdenum under uniaxial tensile load at room temperature. The microscale grid pattern was fabricated using the sputtering deposition technology on the specimen surface covered with a fine square mesh copper grid. The microscale strain fields around the crack tip were measured by geometric phase analysis technique and compared with the theoretical solutions based on the linear elastic fracture mechanics theory. The results showed that as the displacement increases, the crack propagated mainly perpendicular to the tensile direction during the fracture process of molybdenum. The normal strain ε xx and shear strain ε xy are relatively small, and the normal strain ε yy holds a dominant position in the deformation fields and plays a key role in the whole fracture process of molybdenum. With the increase in displacement, the ε yy increases rapidly and the two lobes grow significantly but maintain the same shape and orientation. The experimental ε yy is in agreement with the theoretical solution. Along the x -axis in front of the crack tip, there is minor discrepancy between the experimental ε yy and theoretical ε yy within 25 μm from the crack tip, but the agreement between them is very good far from the crack tip (&gt;25 μm).</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-016-0098-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Characterization and Evaluation of Materials ; Condensed Matter Physics ; Crack initiation ; Crack propagation ; Deposition ; Displacement ; Fracture mechanics ; Machines ; Manufacturing ; Molybdenum ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Scanning electron microscopy ; Strain ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2016-06, Vol.122 (6), p.1-7, Article 573</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-7dbba77b15a24d4f6742bb07840b2b4bdac382b4f132894d01239f250e0117063</citedby><cites>FETCH-LOGICAL-c321t-7dbba77b15a24d4f6742bb07840b2b4bdac382b4f132894d01239f250e0117063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-016-0098-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-016-0098-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, J. J.</creatorcontrib><creatorcontrib>Li, W. C.</creatorcontrib><creatorcontrib>Jin, Y. J.</creatorcontrib><creatorcontrib>Wang, L. F.</creatorcontrib><creatorcontrib>Zhao, C. W.</creatorcontrib><creatorcontrib>Xing, Y. M.</creatorcontrib><creatorcontrib>Lang, F. C.</creatorcontrib><creatorcontrib>Yan, L.</creatorcontrib><creatorcontrib>Yang, S. T.</creatorcontrib><title>In situ SEM observation of microscale strain fields around a crack tip in polycrystalline molybdenum</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>In situ scanning electron microscopy was employed to investigate the crack initiation and propagation in polycrystalline molybdenum under uniaxial tensile load at room temperature. The microscale grid pattern was fabricated using the sputtering deposition technology on the specimen surface covered with a fine square mesh copper grid. The microscale strain fields around the crack tip were measured by geometric phase analysis technique and compared with the theoretical solutions based on the linear elastic fracture mechanics theory. The results showed that as the displacement increases, the crack propagated mainly perpendicular to the tensile direction during the fracture process of molybdenum. The normal strain ε xx and shear strain ε xy are relatively small, and the normal strain ε yy holds a dominant position in the deformation fields and plays a key role in the whole fracture process of molybdenum. With the increase in displacement, the ε yy increases rapidly and the two lobes grow significantly but maintain the same shape and orientation. The experimental ε yy is in agreement with the theoretical solution. Along the x -axis in front of the crack tip, there is minor discrepancy between the experimental ε yy and theoretical ε yy within 25 μm from the crack tip, but the agreement between them is very good far from the crack tip (&gt;25 μm).</description><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Deposition</subject><subject>Displacement</subject><subject>Fracture mechanics</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Molybdenum</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Scanning electron microscopy</subject><subject>Strain</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AG85eqlO_mzTHmVZdUHxoJ5D0qSStU1q0gr77U2pZ-cyM8x7A--H0DWBWwIg7hIAY3UBpCwA6qrgJ2hFOKMFlAxO0QpqLoqK1eU5ukjpALk4pStk9h4nN074bfeCg042_qjRBY9Di3vXxJAa1Vmcxqicx62znUlYxTB5gxVuomq-8OgGnI9D6I5NPKZRdZ3zFvd518b6qb9EZ63qkr3662v08bB73z4Vz6-P--39c9EwSsZCGK2VEJpsFOWGt6XgVGsQFQdNNddGNazKQ0sYrWpugFBWt3QDFggROega3Sx_hxi-J5tG2bvU2K5T3oYpSVJVALRkm1lKFukcMUXbyiG6XsWjJCBnonIhKjNROROVPHvo4klZ6z9tlIcwRZ8T_WP6BeQpeTY</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Li, J. J.</creator><creator>Li, W. C.</creator><creator>Jin, Y. J.</creator><creator>Wang, L. F.</creator><creator>Zhao, C. W.</creator><creator>Xing, Y. M.</creator><creator>Lang, F. C.</creator><creator>Yan, L.</creator><creator>Yang, S. T.</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160601</creationdate><title>In situ SEM observation of microscale strain fields around a crack tip in polycrystalline molybdenum</title><author>Li, J. J. ; Li, W. C. ; Jin, Y. J. ; Wang, L. F. ; Zhao, C. W. ; Xing, Y. M. ; Lang, F. C. ; Yan, L. ; Yang, S. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-7dbba77b15a24d4f6742bb07840b2b4bdac382b4f132894d01239f250e0117063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Deposition</topic><topic>Displacement</topic><topic>Fracture mechanics</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Molybdenum</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Scanning electron microscopy</topic><topic>Strain</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, J. J.</creatorcontrib><creatorcontrib>Li, W. C.</creatorcontrib><creatorcontrib>Jin, Y. J.</creatorcontrib><creatorcontrib>Wang, L. F.</creatorcontrib><creatorcontrib>Zhao, C. W.</creatorcontrib><creatorcontrib>Xing, Y. M.</creatorcontrib><creatorcontrib>Lang, F. C.</creatorcontrib><creatorcontrib>Yan, L.</creatorcontrib><creatorcontrib>Yang, S. T.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, J. J.</au><au>Li, W. C.</au><au>Jin, Y. J.</au><au>Wang, L. F.</au><au>Zhao, C. W.</au><au>Xing, Y. M.</au><au>Lang, F. C.</au><au>Yan, L.</au><au>Yang, S. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ SEM observation of microscale strain fields around a crack tip in polycrystalline molybdenum</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2016-06-01</date><risdate>2016</risdate><volume>122</volume><issue>6</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><artnum>573</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>In situ scanning electron microscopy was employed to investigate the crack initiation and propagation in polycrystalline molybdenum under uniaxial tensile load at room temperature. The microscale grid pattern was fabricated using the sputtering deposition technology on the specimen surface covered with a fine square mesh copper grid. The microscale strain fields around the crack tip were measured by geometric phase analysis technique and compared with the theoretical solutions based on the linear elastic fracture mechanics theory. The results showed that as the displacement increases, the crack propagated mainly perpendicular to the tensile direction during the fracture process of molybdenum. The normal strain ε xx and shear strain ε xy are relatively small, and the normal strain ε yy holds a dominant position in the deformation fields and plays a key role in the whole fracture process of molybdenum. With the increase in displacement, the ε yy increases rapidly and the two lobes grow significantly but maintain the same shape and orientation. The experimental ε yy is in agreement with the theoretical solution. Along the x -axis in front of the crack tip, there is minor discrepancy between the experimental ε yy and theoretical ε yy within 25 μm from the crack tip, but the agreement between them is very good far from the crack tip (&gt;25 μm).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-016-0098-4</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2016-06, Vol.122 (6), p.1-7, Article 573
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_miscellaneous_1880026356
source Springer Nature - Complete Springer Journals
subjects Characterization and Evaluation of Materials
Condensed Matter Physics
Crack initiation
Crack propagation
Deposition
Displacement
Fracture mechanics
Machines
Manufacturing
Molybdenum
Nanotechnology
Optical and Electronic Materials
Physics
Physics and Astronomy
Processes
Scanning electron microscopy
Strain
Surfaces and Interfaces
Thin Films
title In situ SEM observation of microscale strain fields around a crack tip in polycrystalline molybdenum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20SEM%20observation%20of%20microscale%20strain%20fields%20around%20a%20crack%20tip%20in%20polycrystalline%20molybdenum&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Li,%20J.%20J.&rft.date=2016-06-01&rft.volume=122&rft.issue=6&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.artnum=573&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-016-0098-4&rft_dat=%3Cproquest_cross%3E1880026356%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880026356&rft_id=info:pmid/&rfr_iscdi=true