In situ SEM observation of microscale strain fields around a crack tip in polycrystalline molybdenum
In situ scanning electron microscopy was employed to investigate the crack initiation and propagation in polycrystalline molybdenum under uniaxial tensile load at room temperature. The microscale grid pattern was fabricated using the sputtering deposition technology on the specimen surface covered w...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2016-06, Vol.122 (6), p.1-7, Article 573 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | Applied physics. A, Materials science & processing |
container_volume | 122 |
creator | Li, J. J. Li, W. C. Jin, Y. J. Wang, L. F. Zhao, C. W. Xing, Y. M. Lang, F. C. Yan, L. Yang, S. T. |
description | In situ scanning electron microscopy was employed to investigate the crack initiation and propagation in polycrystalline molybdenum under uniaxial tensile load at room temperature. The microscale grid pattern was fabricated using the sputtering deposition technology on the specimen surface covered with a fine square mesh copper grid. The microscale strain fields around the crack tip were measured by geometric phase analysis technique and compared with the theoretical solutions based on the linear elastic fracture mechanics theory. The results showed that as the displacement increases, the crack propagated mainly perpendicular to the tensile direction during the fracture process of molybdenum. The normal strain
ε
xx
and shear strain
ε
xy
are relatively small, and the normal strain
ε
yy
holds a dominant position in the deformation fields and plays a key role in the whole fracture process of molybdenum. With the increase in displacement, the
ε
yy
increases rapidly and the two lobes grow significantly but maintain the same shape and orientation. The experimental
ε
yy
is in agreement with the theoretical solution. Along the
x
-axis in front of the crack tip, there is minor discrepancy between the experimental
ε
yy
and theoretical
ε
yy
within 25 μm from the crack tip, but the agreement between them is very good far from the crack tip (>25 μm). |
doi_str_mv | 10.1007/s00339-016-0098-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880026356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880026356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-7dbba77b15a24d4f6742bb07840b2b4bdac382b4f132894d01239f250e0117063</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG85eqlO_mzTHmVZdUHxoJ5D0qSStU1q0gr77U2pZ-cyM8x7A--H0DWBWwIg7hIAY3UBpCwA6qrgJ2hFOKMFlAxO0QpqLoqK1eU5ukjpALk4pStk9h4nN074bfeCg042_qjRBY9Di3vXxJAa1Vmcxqicx62znUlYxTB5gxVuomq-8OgGnI9D6I5NPKZRdZ3zFvd518b6qb9EZ63qkr3662v08bB73z4Vz6-P--39c9EwSsZCGK2VEJpsFOWGt6XgVGsQFQdNNddGNazKQ0sYrWpugFBWt3QDFggROega3Sx_hxi-J5tG2bvU2K5T3oYpSVJVALRkm1lKFukcMUXbyiG6XsWjJCBnonIhKjNROROVPHvo4klZ6z9tlIcwRZ8T_WP6BeQpeTY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880026356</pqid></control><display><type>article</type><title>In situ SEM observation of microscale strain fields around a crack tip in polycrystalline molybdenum</title><source>Springer Nature - Complete Springer Journals</source><creator>Li, J. J. ; Li, W. C. ; Jin, Y. J. ; Wang, L. F. ; Zhao, C. W. ; Xing, Y. M. ; Lang, F. C. ; Yan, L. ; Yang, S. T.</creator><creatorcontrib>Li, J. J. ; Li, W. C. ; Jin, Y. J. ; Wang, L. F. ; Zhao, C. W. ; Xing, Y. M. ; Lang, F. C. ; Yan, L. ; Yang, S. T.</creatorcontrib><description>In situ scanning electron microscopy was employed to investigate the crack initiation and propagation in polycrystalline molybdenum under uniaxial tensile load at room temperature. The microscale grid pattern was fabricated using the sputtering deposition technology on the specimen surface covered with a fine square mesh copper grid. The microscale strain fields around the crack tip were measured by geometric phase analysis technique and compared with the theoretical solutions based on the linear elastic fracture mechanics theory. The results showed that as the displacement increases, the crack propagated mainly perpendicular to the tensile direction during the fracture process of molybdenum. The normal strain
ε
xx
and shear strain
ε
xy
are relatively small, and the normal strain
ε
yy
holds a dominant position in the deformation fields and plays a key role in the whole fracture process of molybdenum. With the increase in displacement, the
ε
yy
increases rapidly and the two lobes grow significantly but maintain the same shape and orientation. The experimental
ε
yy
is in agreement with the theoretical solution. Along the
x
-axis in front of the crack tip, there is minor discrepancy between the experimental
ε
yy
and theoretical
ε
yy
within 25 μm from the crack tip, but the agreement between them is very good far from the crack tip (>25 μm).</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-016-0098-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Characterization and Evaluation of Materials ; Condensed Matter Physics ; Crack initiation ; Crack propagation ; Deposition ; Displacement ; Fracture mechanics ; Machines ; Manufacturing ; Molybdenum ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Scanning electron microscopy ; Strain ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Applied physics. A, Materials science & processing, 2016-06, Vol.122 (6), p.1-7, Article 573</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-7dbba77b15a24d4f6742bb07840b2b4bdac382b4f132894d01239f250e0117063</citedby><cites>FETCH-LOGICAL-c321t-7dbba77b15a24d4f6742bb07840b2b4bdac382b4f132894d01239f250e0117063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-016-0098-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-016-0098-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, J. J.</creatorcontrib><creatorcontrib>Li, W. C.</creatorcontrib><creatorcontrib>Jin, Y. J.</creatorcontrib><creatorcontrib>Wang, L. F.</creatorcontrib><creatorcontrib>Zhao, C. W.</creatorcontrib><creatorcontrib>Xing, Y. M.</creatorcontrib><creatorcontrib>Lang, F. C.</creatorcontrib><creatorcontrib>Yan, L.</creatorcontrib><creatorcontrib>Yang, S. T.</creatorcontrib><title>In situ SEM observation of microscale strain fields around a crack tip in polycrystalline molybdenum</title><title>Applied physics. A, Materials science & processing</title><addtitle>Appl. Phys. A</addtitle><description>In situ scanning electron microscopy was employed to investigate the crack initiation and propagation in polycrystalline molybdenum under uniaxial tensile load at room temperature. The microscale grid pattern was fabricated using the sputtering deposition technology on the specimen surface covered with a fine square mesh copper grid. The microscale strain fields around the crack tip were measured by geometric phase analysis technique and compared with the theoretical solutions based on the linear elastic fracture mechanics theory. The results showed that as the displacement increases, the crack propagated mainly perpendicular to the tensile direction during the fracture process of molybdenum. The normal strain
ε
xx
and shear strain
ε
xy
are relatively small, and the normal strain
ε
yy
holds a dominant position in the deformation fields and plays a key role in the whole fracture process of molybdenum. With the increase in displacement, the
ε
yy
increases rapidly and the two lobes grow significantly but maintain the same shape and orientation. The experimental
ε
yy
is in agreement with the theoretical solution. Along the
x
-axis in front of the crack tip, there is minor discrepancy between the experimental
ε
yy
and theoretical
ε
yy
within 25 μm from the crack tip, but the agreement between them is very good far from the crack tip (>25 μm).</description><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Deposition</subject><subject>Displacement</subject><subject>Fracture mechanics</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Molybdenum</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Scanning electron microscopy</subject><subject>Strain</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AG85eqlO_mzTHmVZdUHxoJ5D0qSStU1q0gr77U2pZ-cyM8x7A--H0DWBWwIg7hIAY3UBpCwA6qrgJ2hFOKMFlAxO0QpqLoqK1eU5ukjpALk4pStk9h4nN074bfeCg042_qjRBY9Di3vXxJAa1Vmcxqicx62znUlYxTB5gxVuomq-8OgGnI9D6I5NPKZRdZ3zFvd518b6qb9EZ63qkr3662v08bB73z4Vz6-P--39c9EwSsZCGK2VEJpsFOWGt6XgVGsQFQdNNddGNazKQ0sYrWpugFBWt3QDFggROega3Sx_hxi-J5tG2bvU2K5T3oYpSVJVALRkm1lKFukcMUXbyiG6XsWjJCBnonIhKjNROROVPHvo4klZ6z9tlIcwRZ8T_WP6BeQpeTY</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Li, J. J.</creator><creator>Li, W. C.</creator><creator>Jin, Y. J.</creator><creator>Wang, L. F.</creator><creator>Zhao, C. W.</creator><creator>Xing, Y. M.</creator><creator>Lang, F. C.</creator><creator>Yan, L.</creator><creator>Yang, S. T.</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160601</creationdate><title>In situ SEM observation of microscale strain fields around a crack tip in polycrystalline molybdenum</title><author>Li, J. J. ; Li, W. C. ; Jin, Y. J. ; Wang, L. F. ; Zhao, C. W. ; Xing, Y. M. ; Lang, F. C. ; Yan, L. ; Yang, S. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-7dbba77b15a24d4f6742bb07840b2b4bdac382b4f132894d01239f250e0117063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Deposition</topic><topic>Displacement</topic><topic>Fracture mechanics</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Molybdenum</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Scanning electron microscopy</topic><topic>Strain</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, J. J.</creatorcontrib><creatorcontrib>Li, W. C.</creatorcontrib><creatorcontrib>Jin, Y. J.</creatorcontrib><creatorcontrib>Wang, L. F.</creatorcontrib><creatorcontrib>Zhao, C. W.</creatorcontrib><creatorcontrib>Xing, Y. M.</creatorcontrib><creatorcontrib>Lang, F. C.</creatorcontrib><creatorcontrib>Yan, L.</creatorcontrib><creatorcontrib>Yang, S. T.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, J. J.</au><au>Li, W. C.</au><au>Jin, Y. J.</au><au>Wang, L. F.</au><au>Zhao, C. W.</au><au>Xing, Y. M.</au><au>Lang, F. C.</au><au>Yan, L.</au><au>Yang, S. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ SEM observation of microscale strain fields around a crack tip in polycrystalline molybdenum</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><stitle>Appl. Phys. A</stitle><date>2016-06-01</date><risdate>2016</risdate><volume>122</volume><issue>6</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><artnum>573</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>In situ scanning electron microscopy was employed to investigate the crack initiation and propagation in polycrystalline molybdenum under uniaxial tensile load at room temperature. The microscale grid pattern was fabricated using the sputtering deposition technology on the specimen surface covered with a fine square mesh copper grid. The microscale strain fields around the crack tip were measured by geometric phase analysis technique and compared with the theoretical solutions based on the linear elastic fracture mechanics theory. The results showed that as the displacement increases, the crack propagated mainly perpendicular to the tensile direction during the fracture process of molybdenum. The normal strain
ε
xx
and shear strain
ε
xy
are relatively small, and the normal strain
ε
yy
holds a dominant position in the deformation fields and plays a key role in the whole fracture process of molybdenum. With the increase in displacement, the
ε
yy
increases rapidly and the two lobes grow significantly but maintain the same shape and orientation. The experimental
ε
yy
is in agreement with the theoretical solution. Along the
x
-axis in front of the crack tip, there is minor discrepancy between the experimental
ε
yy
and theoretical
ε
yy
within 25 μm from the crack tip, but the agreement between them is very good far from the crack tip (>25 μm).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-016-0098-4</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2016-06, Vol.122 (6), p.1-7, Article 573 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_proquest_miscellaneous_1880026356 |
source | Springer Nature - Complete Springer Journals |
subjects | Characterization and Evaluation of Materials Condensed Matter Physics Crack initiation Crack propagation Deposition Displacement Fracture mechanics Machines Manufacturing Molybdenum Nanotechnology Optical and Electronic Materials Physics Physics and Astronomy Processes Scanning electron microscopy Strain Surfaces and Interfaces Thin Films |
title | In situ SEM observation of microscale strain fields around a crack tip in polycrystalline molybdenum |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20SEM%20observation%20of%20microscale%20strain%20fields%20around%20a%20crack%20tip%20in%20polycrystalline%20molybdenum&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Li,%20J.%20J.&rft.date=2016-06-01&rft.volume=122&rft.issue=6&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.artnum=573&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-016-0098-4&rft_dat=%3Cproquest_cross%3E1880026356%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880026356&rft_id=info:pmid/&rfr_iscdi=true |