Configuration Spaces of Plane Polygons and a sub-Riemannian Approach to the Equitangent Problem

The equitangent locus of a convex plane curve consists of the points from which the two tangent segments to the curve have equal length. The equitangent problem concerns the relationship between the curve and its equitangent locus. An equitangent n-gon of a convex curve is a circumscribed n-gon whos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dynamical and control systems 2016-04, Vol.22 (2), p.227-250
Hauptverfasser: Jerónimo-Castro, Jesús, Tabachnikov, Serge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 250
container_issue 2
container_start_page 227
container_title Journal of dynamical and control systems
container_volume 22
creator Jerónimo-Castro, Jesús
Tabachnikov, Serge
description The equitangent locus of a convex plane curve consists of the points from which the two tangent segments to the curve have equal length. The equitangent problem concerns the relationship between the curve and its equitangent locus. An equitangent n-gon of a convex curve is a circumscribed n-gon whose vertices belong to the equitangent locus. We are interested in curves that admit 1-parameter families of equitangent n-gons.We use methods of sub-Riemannian geometry: We define a distribution on the space of polygons and study its bracket generating properties. The 1-parameter families of equitangent polygons correspond to the curves, tangent to this distribution. This distribution is closely related with the Birkhoff distribution on the space of plane polygons with a fixed perimeter length whose study, in the framework of the billiard ball problem, was pioneered by Yu. Baryshnikov, V. Zharnitsky, and J. Landsberg.
doi_str_mv 10.1007/s10883-015-9269-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880025728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880025728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-610366dbdf28c7ba04b778aba1e4a5b0d03adfc7b1d94e3c3bae5b0fed49eae23</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAey8ZGPwI4mdZVWVh4RExWNtjROnTZXYqZ0s-ve4CmtWM5q5dzT3IHTP6COjVD5FRpUShLKclLwoSXaBFiyXgqiiVJepp7IkXPLsGt3EeKCUlkqoBdJr75p2NwUYW-_w1wCVjdg3eNuBs3jru9POu4jB1RhwnAz5bG0PzrXg8GoYgodqj0ePx73Fm-PUjuB21o14G7zpbH-Lrhroor37q0v087z5Xr-S94-Xt_XqnVSCs5EUjIqiqE3dcFVJAzQzUiowwGwGuaE1FVA3acPqMrOiEgZsGje2zkoLloslepjvpo-Ok42j7ttY2e6cwk9RM6Uo5bnkKknZLK2CjzHYRg-h7SGcNKP6DFPPMHWCqc8wdZY8fPbEpE0Bgz74KbiU6B_TLzY6eUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880025728</pqid></control><display><type>article</type><title>Configuration Spaces of Plane Polygons and a sub-Riemannian Approach to the Equitangent Problem</title><source>SpringerLink Journals - AutoHoldings</source><creator>Jerónimo-Castro, Jesús ; Tabachnikov, Serge</creator><creatorcontrib>Jerónimo-Castro, Jesús ; Tabachnikov, Serge</creatorcontrib><description>The equitangent locus of a convex plane curve consists of the points from which the two tangent segments to the curve have equal length. The equitangent problem concerns the relationship between the curve and its equitangent locus. An equitangent n-gon of a convex curve is a circumscribed n-gon whose vertices belong to the equitangent locus. We are interested in curves that admit 1-parameter families of equitangent n-gons.We use methods of sub-Riemannian geometry: We define a distribution on the space of polygons and study its bracket generating properties. The 1-parameter families of equitangent polygons correspond to the curves, tangent to this distribution. This distribution is closely related with the Birkhoff distribution on the space of plane polygons with a fixed perimeter length whose study, in the framework of the billiard ball problem, was pioneered by Yu. Baryshnikov, V. Zharnitsky, and J. Landsberg.</description><identifier>ISSN: 1079-2724</identifier><identifier>EISSN: 1573-8698</identifier><identifier>DOI: 10.1007/s10883-015-9269-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Brackets ; Calculus of Variations and Optimal Control; Optimization ; Control ; Control systems ; Curves (geometry) ; Dynamical Systems ; Dynamical Systems and Ergodic Theory ; Mathematics ; Mathematics and Statistics ; Planes ; Polygons ; Segments ; Systems Theory ; Tangents ; Vibration</subject><ispartof>Journal of dynamical and control systems, 2016-04, Vol.22 (2), p.227-250</ispartof><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-610366dbdf28c7ba04b778aba1e4a5b0d03adfc7b1d94e3c3bae5b0fed49eae23</citedby><cites>FETCH-LOGICAL-c321t-610366dbdf28c7ba04b778aba1e4a5b0d03adfc7b1d94e3c3bae5b0fed49eae23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10883-015-9269-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10883-015-9269-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Jerónimo-Castro, Jesús</creatorcontrib><creatorcontrib>Tabachnikov, Serge</creatorcontrib><title>Configuration Spaces of Plane Polygons and a sub-Riemannian Approach to the Equitangent Problem</title><title>Journal of dynamical and control systems</title><addtitle>J Dyn Control Syst</addtitle><description>The equitangent locus of a convex plane curve consists of the points from which the two tangent segments to the curve have equal length. The equitangent problem concerns the relationship between the curve and its equitangent locus. An equitangent n-gon of a convex curve is a circumscribed n-gon whose vertices belong to the equitangent locus. We are interested in curves that admit 1-parameter families of equitangent n-gons.We use methods of sub-Riemannian geometry: We define a distribution on the space of polygons and study its bracket generating properties. The 1-parameter families of equitangent polygons correspond to the curves, tangent to this distribution. This distribution is closely related with the Birkhoff distribution on the space of plane polygons with a fixed perimeter length whose study, in the framework of the billiard ball problem, was pioneered by Yu. Baryshnikov, V. Zharnitsky, and J. Landsberg.</description><subject>Brackets</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Control systems</subject><subject>Curves (geometry)</subject><subject>Dynamical Systems</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Planes</subject><subject>Polygons</subject><subject>Segments</subject><subject>Systems Theory</subject><subject>Tangents</subject><subject>Vibration</subject><issn>1079-2724</issn><issn>1573-8698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAey8ZGPwI4mdZVWVh4RExWNtjROnTZXYqZ0s-ve4CmtWM5q5dzT3IHTP6COjVD5FRpUShLKclLwoSXaBFiyXgqiiVJepp7IkXPLsGt3EeKCUlkqoBdJr75p2NwUYW-_w1wCVjdg3eNuBs3jru9POu4jB1RhwnAz5bG0PzrXg8GoYgodqj0ePx73Fm-PUjuB21o14G7zpbH-Lrhroor37q0v087z5Xr-S94-Xt_XqnVSCs5EUjIqiqE3dcFVJAzQzUiowwGwGuaE1FVA3acPqMrOiEgZsGje2zkoLloslepjvpo-Ok42j7ttY2e6cwk9RM6Uo5bnkKknZLK2CjzHYRg-h7SGcNKP6DFPPMHWCqc8wdZY8fPbEpE0Bgz74KbiU6B_TLzY6eUQ</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Jerónimo-Castro, Jesús</creator><creator>Tabachnikov, Serge</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160401</creationdate><title>Configuration Spaces of Plane Polygons and a sub-Riemannian Approach to the Equitangent Problem</title><author>Jerónimo-Castro, Jesús ; Tabachnikov, Serge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-610366dbdf28c7ba04b778aba1e4a5b0d03adfc7b1d94e3c3bae5b0fed49eae23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Brackets</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Control systems</topic><topic>Curves (geometry)</topic><topic>Dynamical Systems</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Planes</topic><topic>Polygons</topic><topic>Segments</topic><topic>Systems Theory</topic><topic>Tangents</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jerónimo-Castro, Jesús</creatorcontrib><creatorcontrib>Tabachnikov, Serge</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of dynamical and control systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jerónimo-Castro, Jesús</au><au>Tabachnikov, Serge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Configuration Spaces of Plane Polygons and a sub-Riemannian Approach to the Equitangent Problem</atitle><jtitle>Journal of dynamical and control systems</jtitle><stitle>J Dyn Control Syst</stitle><date>2016-04-01</date><risdate>2016</risdate><volume>22</volume><issue>2</issue><spage>227</spage><epage>250</epage><pages>227-250</pages><issn>1079-2724</issn><eissn>1573-8698</eissn><abstract>The equitangent locus of a convex plane curve consists of the points from which the two tangent segments to the curve have equal length. The equitangent problem concerns the relationship between the curve and its equitangent locus. An equitangent n-gon of a convex curve is a circumscribed n-gon whose vertices belong to the equitangent locus. We are interested in curves that admit 1-parameter families of equitangent n-gons.We use methods of sub-Riemannian geometry: We define a distribution on the space of polygons and study its bracket generating properties. The 1-parameter families of equitangent polygons correspond to the curves, tangent to this distribution. This distribution is closely related with the Birkhoff distribution on the space of plane polygons with a fixed perimeter length whose study, in the framework of the billiard ball problem, was pioneered by Yu. Baryshnikov, V. Zharnitsky, and J. Landsberg.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10883-015-9269-4</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1079-2724
ispartof Journal of dynamical and control systems, 2016-04, Vol.22 (2), p.227-250
issn 1079-2724
1573-8698
language eng
recordid cdi_proquest_miscellaneous_1880025728
source SpringerLink Journals - AutoHoldings
subjects Brackets
Calculus of Variations and Optimal Control
Optimization
Control
Control systems
Curves (geometry)
Dynamical Systems
Dynamical Systems and Ergodic Theory
Mathematics
Mathematics and Statistics
Planes
Polygons
Segments
Systems Theory
Tangents
Vibration
title Configuration Spaces of Plane Polygons and a sub-Riemannian Approach to the Equitangent Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A30%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Configuration%20Spaces%20of%20Plane%20Polygons%20and%20a%20sub-Riemannian%20Approach%20to%20the%20Equitangent%20Problem&rft.jtitle=Journal%20of%20dynamical%20and%20control%20systems&rft.au=Jer%C3%B3nimo-Castro,%20Jes%C3%BAs&rft.date=2016-04-01&rft.volume=22&rft.issue=2&rft.spage=227&rft.epage=250&rft.pages=227-250&rft.issn=1079-2724&rft.eissn=1573-8698&rft_id=info:doi/10.1007/s10883-015-9269-4&rft_dat=%3Cproquest_cross%3E1880025728%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880025728&rft_id=info:pmid/&rfr_iscdi=true