Configuration Spaces of Plane Polygons and a sub-Riemannian Approach to the Equitangent Problem
The equitangent locus of a convex plane curve consists of the points from which the two tangent segments to the curve have equal length. The equitangent problem concerns the relationship between the curve and its equitangent locus. An equitangent n-gon of a convex curve is a circumscribed n-gon whos...
Gespeichert in:
Veröffentlicht in: | Journal of dynamical and control systems 2016-04, Vol.22 (2), p.227-250 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 250 |
---|---|
container_issue | 2 |
container_start_page | 227 |
container_title | Journal of dynamical and control systems |
container_volume | 22 |
creator | Jerónimo-Castro, Jesús Tabachnikov, Serge |
description | The equitangent locus of a convex plane curve consists of the points from which the two tangent segments to the curve have equal length. The equitangent problem concerns the relationship between the curve and its equitangent locus. An equitangent n-gon of a convex curve is a circumscribed n-gon whose vertices belong to the equitangent locus. We are interested in curves that admit 1-parameter families of equitangent n-gons.We use methods of sub-Riemannian geometry: We define a distribution on the space of polygons and study its bracket generating properties. The 1-parameter families of equitangent polygons correspond to the curves, tangent to this distribution. This distribution is closely related with the Birkhoff distribution on the space of plane polygons with a fixed perimeter length whose study, in the framework of the billiard ball problem, was pioneered by Yu. Baryshnikov, V. Zharnitsky, and J. Landsberg. |
doi_str_mv | 10.1007/s10883-015-9269-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880025728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880025728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-610366dbdf28c7ba04b778aba1e4a5b0d03adfc7b1d94e3c3bae5b0fed49eae23</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAey8ZGPwI4mdZVWVh4RExWNtjROnTZXYqZ0s-ve4CmtWM5q5dzT3IHTP6COjVD5FRpUShLKclLwoSXaBFiyXgqiiVJepp7IkXPLsGt3EeKCUlkqoBdJr75p2NwUYW-_w1wCVjdg3eNuBs3jru9POu4jB1RhwnAz5bG0PzrXg8GoYgodqj0ePx73Fm-PUjuB21o14G7zpbH-Lrhroor37q0v087z5Xr-S94-Xt_XqnVSCs5EUjIqiqE3dcFVJAzQzUiowwGwGuaE1FVA3acPqMrOiEgZsGje2zkoLloslepjvpo-Ok42j7ttY2e6cwk9RM6Uo5bnkKknZLK2CjzHYRg-h7SGcNKP6DFPPMHWCqc8wdZY8fPbEpE0Bgz74KbiU6B_TLzY6eUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880025728</pqid></control><display><type>article</type><title>Configuration Spaces of Plane Polygons and a sub-Riemannian Approach to the Equitangent Problem</title><source>SpringerLink Journals - AutoHoldings</source><creator>Jerónimo-Castro, Jesús ; Tabachnikov, Serge</creator><creatorcontrib>Jerónimo-Castro, Jesús ; Tabachnikov, Serge</creatorcontrib><description>The equitangent locus of a convex plane curve consists of the points from which the two tangent segments to the curve have equal length. The equitangent problem concerns the relationship between the curve and its equitangent locus. An equitangent n-gon of a convex curve is a circumscribed n-gon whose vertices belong to the equitangent locus. We are interested in curves that admit 1-parameter families of equitangent n-gons.We use methods of sub-Riemannian geometry: We define a distribution on the space of polygons and study its bracket generating properties. The 1-parameter families of equitangent polygons correspond to the curves, tangent to this distribution. This distribution is closely related with the Birkhoff distribution on the space of plane polygons with a fixed perimeter length whose study, in the framework of the billiard ball problem, was pioneered by Yu. Baryshnikov, V. Zharnitsky, and J. Landsberg.</description><identifier>ISSN: 1079-2724</identifier><identifier>EISSN: 1573-8698</identifier><identifier>DOI: 10.1007/s10883-015-9269-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Brackets ; Calculus of Variations and Optimal Control; Optimization ; Control ; Control systems ; Curves (geometry) ; Dynamical Systems ; Dynamical Systems and Ergodic Theory ; Mathematics ; Mathematics and Statistics ; Planes ; Polygons ; Segments ; Systems Theory ; Tangents ; Vibration</subject><ispartof>Journal of dynamical and control systems, 2016-04, Vol.22 (2), p.227-250</ispartof><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-610366dbdf28c7ba04b778aba1e4a5b0d03adfc7b1d94e3c3bae5b0fed49eae23</citedby><cites>FETCH-LOGICAL-c321t-610366dbdf28c7ba04b778aba1e4a5b0d03adfc7b1d94e3c3bae5b0fed49eae23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10883-015-9269-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10883-015-9269-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Jerónimo-Castro, Jesús</creatorcontrib><creatorcontrib>Tabachnikov, Serge</creatorcontrib><title>Configuration Spaces of Plane Polygons and a sub-Riemannian Approach to the Equitangent Problem</title><title>Journal of dynamical and control systems</title><addtitle>J Dyn Control Syst</addtitle><description>The equitangent locus of a convex plane curve consists of the points from which the two tangent segments to the curve have equal length. The equitangent problem concerns the relationship between the curve and its equitangent locus. An equitangent n-gon of a convex curve is a circumscribed n-gon whose vertices belong to the equitangent locus. We are interested in curves that admit 1-parameter families of equitangent n-gons.We use methods of sub-Riemannian geometry: We define a distribution on the space of polygons and study its bracket generating properties. The 1-parameter families of equitangent polygons correspond to the curves, tangent to this distribution. This distribution is closely related with the Birkhoff distribution on the space of plane polygons with a fixed perimeter length whose study, in the framework of the billiard ball problem, was pioneered by Yu. Baryshnikov, V. Zharnitsky, and J. Landsberg.</description><subject>Brackets</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Control systems</subject><subject>Curves (geometry)</subject><subject>Dynamical Systems</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Planes</subject><subject>Polygons</subject><subject>Segments</subject><subject>Systems Theory</subject><subject>Tangents</subject><subject>Vibration</subject><issn>1079-2724</issn><issn>1573-8698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAey8ZGPwI4mdZVWVh4RExWNtjROnTZXYqZ0s-ve4CmtWM5q5dzT3IHTP6COjVD5FRpUShLKclLwoSXaBFiyXgqiiVJepp7IkXPLsGt3EeKCUlkqoBdJr75p2NwUYW-_w1wCVjdg3eNuBs3jru9POu4jB1RhwnAz5bG0PzrXg8GoYgodqj0ePx73Fm-PUjuB21o14G7zpbH-Lrhroor37q0v087z5Xr-S94-Xt_XqnVSCs5EUjIqiqE3dcFVJAzQzUiowwGwGuaE1FVA3acPqMrOiEgZsGje2zkoLloslepjvpo-Ok42j7ttY2e6cwk9RM6Uo5bnkKknZLK2CjzHYRg-h7SGcNKP6DFPPMHWCqc8wdZY8fPbEpE0Bgz74KbiU6B_TLzY6eUQ</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Jerónimo-Castro, Jesús</creator><creator>Tabachnikov, Serge</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160401</creationdate><title>Configuration Spaces of Plane Polygons and a sub-Riemannian Approach to the Equitangent Problem</title><author>Jerónimo-Castro, Jesús ; Tabachnikov, Serge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-610366dbdf28c7ba04b778aba1e4a5b0d03adfc7b1d94e3c3bae5b0fed49eae23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Brackets</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Control systems</topic><topic>Curves (geometry)</topic><topic>Dynamical Systems</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Planes</topic><topic>Polygons</topic><topic>Segments</topic><topic>Systems Theory</topic><topic>Tangents</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jerónimo-Castro, Jesús</creatorcontrib><creatorcontrib>Tabachnikov, Serge</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of dynamical and control systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jerónimo-Castro, Jesús</au><au>Tabachnikov, Serge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Configuration Spaces of Plane Polygons and a sub-Riemannian Approach to the Equitangent Problem</atitle><jtitle>Journal of dynamical and control systems</jtitle><stitle>J Dyn Control Syst</stitle><date>2016-04-01</date><risdate>2016</risdate><volume>22</volume><issue>2</issue><spage>227</spage><epage>250</epage><pages>227-250</pages><issn>1079-2724</issn><eissn>1573-8698</eissn><abstract>The equitangent locus of a convex plane curve consists of the points from which the two tangent segments to the curve have equal length. The equitangent problem concerns the relationship between the curve and its equitangent locus. An equitangent n-gon of a convex curve is a circumscribed n-gon whose vertices belong to the equitangent locus. We are interested in curves that admit 1-parameter families of equitangent n-gons.We use methods of sub-Riemannian geometry: We define a distribution on the space of polygons and study its bracket generating properties. The 1-parameter families of equitangent polygons correspond to the curves, tangent to this distribution. This distribution is closely related with the Birkhoff distribution on the space of plane polygons with a fixed perimeter length whose study, in the framework of the billiard ball problem, was pioneered by Yu. Baryshnikov, V. Zharnitsky, and J. Landsberg.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10883-015-9269-4</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1079-2724 |
ispartof | Journal of dynamical and control systems, 2016-04, Vol.22 (2), p.227-250 |
issn | 1079-2724 1573-8698 |
language | eng |
recordid | cdi_proquest_miscellaneous_1880025728 |
source | SpringerLink Journals - AutoHoldings |
subjects | Brackets Calculus of Variations and Optimal Control Optimization Control Control systems Curves (geometry) Dynamical Systems Dynamical Systems and Ergodic Theory Mathematics Mathematics and Statistics Planes Polygons Segments Systems Theory Tangents Vibration |
title | Configuration Spaces of Plane Polygons and a sub-Riemannian Approach to the Equitangent Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A30%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Configuration%20Spaces%20of%20Plane%20Polygons%20and%20a%20sub-Riemannian%20Approach%20to%20the%20Equitangent%20Problem&rft.jtitle=Journal%20of%20dynamical%20and%20control%20systems&rft.au=Jer%C3%B3nimo-Castro,%20Jes%C3%BAs&rft.date=2016-04-01&rft.volume=22&rft.issue=2&rft.spage=227&rft.epage=250&rft.pages=227-250&rft.issn=1079-2724&rft.eissn=1573-8698&rft_id=info:doi/10.1007/s10883-015-9269-4&rft_dat=%3Cproquest_cross%3E1880025728%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880025728&rft_id=info:pmid/&rfr_iscdi=true |