Global dynamics of autonomous and nonautonomous SI epidemic models with nonlinear incidence rate and feedback controls
This paper discusses autonomous and nonautonomous epidemic models with nonlinear incidence rate of saturated mass action and feedback controls. The global asymptotic stability of disease-free equilibrium and the endemic equilibrium of the autonomous system is established using suitable Lyapunov func...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2016-10, Vol.86 (1), p.337-351 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 351 |
---|---|
container_issue | 1 |
container_start_page | 337 |
container_title | Nonlinear dynamics |
container_volume | 86 |
creator | Tripathi, Jai Prakash Abbas, Syed |
description | This paper discusses autonomous and nonautonomous epidemic models with nonlinear incidence rate of saturated mass action and feedback controls. The global asymptotic stability of disease-free equilibrium and the endemic equilibrium of the autonomous system is established using suitable Lyapunov functional. It is shown that by choosing suitable values of feedback control variables, one can make the disease endemic or extinct as time evolves. Moreover, the effect of coefficient of inhibition on the persistence of disease is also discussed. We discuss the permanence, existence, uniqueness and asymptotic stability of an almost periodic solution of the model. The analytical results obtained in this paper are illustrated with the help of numerical examples. |
doi_str_mv | 10.1007/s11071-016-2892-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880025545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880025545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-5ff3095f0fd9a14cf41f683cb5a1de61f301cd40a1a8a3c59196800e650013033</originalsourceid><addsrcrecordid>eNp9kc1KxDAURoMoOI4-gLuAGzfVe5MmbZci_oHgQgV3IZMmWm2TMekovr2p40IEXQVyz3dyw0fIPsIRAlTHCREqLABlweqGFbBBZigqXjDZPGySGTSsLKCBh22yk9IzAHAG9Yy8XfRhoXvafng9dCbR4KhejcGHIawS1b6lPvgfN7dX1C671maYDqG1faLv3fg0UX3nrY608ybPvbE06tF-KZy17UKbF2qCH2Po0y7ZcrpPdu_7nJP787O708vi-ubi6vTkujC8qsZCOMehEQ5c22gsjSvRyZqbhdDYWol5iqYtQaOuNTeiwUbWAFYKAOTA-Zwcrr3LGF5XNo1q6JKxfa-9zb9RWGecCVGKjB78Qp_DKvq8nWJMZp2UlfyPmlx1lV-eXLimTAwpRevUMnaDjh8KQU19qXVfKvelpr4U5AxbZ1Jm_aONP8x_hj4Bq2aYKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2260136676</pqid></control><display><type>article</type><title>Global dynamics of autonomous and nonautonomous SI epidemic models with nonlinear incidence rate and feedback controls</title><source>Springer Online Journals Complete</source><creator>Tripathi, Jai Prakash ; Abbas, Syed</creator><creatorcontrib>Tripathi, Jai Prakash ; Abbas, Syed</creatorcontrib><description>This paper discusses autonomous and nonautonomous epidemic models with nonlinear incidence rate of saturated mass action and feedback controls. The global asymptotic stability of disease-free equilibrium and the endemic equilibrium of the autonomous system is established using suitable Lyapunov functional. It is shown that by choosing suitable values of feedback control variables, one can make the disease endemic or extinct as time evolves. Moreover, the effect of coefficient of inhibition on the persistence of disease is also discussed. We discuss the permanence, existence, uniqueness and asymptotic stability of an almost periodic solution of the model. The analytical results obtained in this paper are illustrated with the help of numerical examples.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-016-2892-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Asymptotic properties ; Automotive Engineering ; Classical Mechanics ; Control ; Control stability ; Control systems ; Disease control ; Dynamical Systems ; Economic models ; Engineering ; Epidemics ; Feedback control ; Incidence ; Mathematical models ; Mechanical Engineering ; Nonlinear dynamics ; Nonlinearity ; Original Paper ; Stability ; Stability analysis ; Vibration</subject><ispartof>Nonlinear dynamics, 2016-10, Vol.86 (1), p.337-351</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-5ff3095f0fd9a14cf41f683cb5a1de61f301cd40a1a8a3c59196800e650013033</citedby><cites>FETCH-LOGICAL-c377t-5ff3095f0fd9a14cf41f683cb5a1de61f301cd40a1a8a3c59196800e650013033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-016-2892-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-016-2892-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Tripathi, Jai Prakash</creatorcontrib><creatorcontrib>Abbas, Syed</creatorcontrib><title>Global dynamics of autonomous and nonautonomous SI epidemic models with nonlinear incidence rate and feedback controls</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>This paper discusses autonomous and nonautonomous epidemic models with nonlinear incidence rate of saturated mass action and feedback controls. The global asymptotic stability of disease-free equilibrium and the endemic equilibrium of the autonomous system is established using suitable Lyapunov functional. It is shown that by choosing suitable values of feedback control variables, one can make the disease endemic or extinct as time evolves. Moreover, the effect of coefficient of inhibition on the persistence of disease is also discussed. We discuss the permanence, existence, uniqueness and asymptotic stability of an almost periodic solution of the model. The analytical results obtained in this paper are illustrated with the help of numerical examples.</description><subject>Asymptotic properties</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Control stability</subject><subject>Control systems</subject><subject>Disease control</subject><subject>Dynamical Systems</subject><subject>Economic models</subject><subject>Engineering</subject><subject>Epidemics</subject><subject>Feedback control</subject><subject>Incidence</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Nonlinear dynamics</subject><subject>Nonlinearity</subject><subject>Original Paper</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kc1KxDAURoMoOI4-gLuAGzfVe5MmbZci_oHgQgV3IZMmWm2TMekovr2p40IEXQVyz3dyw0fIPsIRAlTHCREqLABlweqGFbBBZigqXjDZPGySGTSsLKCBh22yk9IzAHAG9Yy8XfRhoXvafng9dCbR4KhejcGHIawS1b6lPvgfN7dX1C671maYDqG1faLv3fg0UX3nrY608ybPvbE06tF-KZy17UKbF2qCH2Po0y7ZcrpPdu_7nJP787O708vi-ubi6vTkujC8qsZCOMehEQ5c22gsjSvRyZqbhdDYWol5iqYtQaOuNTeiwUbWAFYKAOTA-Zwcrr3LGF5XNo1q6JKxfa-9zb9RWGecCVGKjB78Qp_DKvq8nWJMZp2UlfyPmlx1lV-eXLimTAwpRevUMnaDjh8KQU19qXVfKvelpr4U5AxbZ1Jm_aONP8x_hj4Bq2aYKA</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Tripathi, Jai Prakash</creator><creator>Abbas, Syed</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20161001</creationdate><title>Global dynamics of autonomous and nonautonomous SI epidemic models with nonlinear incidence rate and feedback controls</title><author>Tripathi, Jai Prakash ; Abbas, Syed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-5ff3095f0fd9a14cf41f683cb5a1de61f301cd40a1a8a3c59196800e650013033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Asymptotic properties</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Control stability</topic><topic>Control systems</topic><topic>Disease control</topic><topic>Dynamical Systems</topic><topic>Economic models</topic><topic>Engineering</topic><topic>Epidemics</topic><topic>Feedback control</topic><topic>Incidence</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Nonlinear dynamics</topic><topic>Nonlinearity</topic><topic>Original Paper</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tripathi, Jai Prakash</creatorcontrib><creatorcontrib>Abbas, Syed</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tripathi, Jai Prakash</au><au>Abbas, Syed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global dynamics of autonomous and nonautonomous SI epidemic models with nonlinear incidence rate and feedback controls</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>86</volume><issue>1</issue><spage>337</spage><epage>351</epage><pages>337-351</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>This paper discusses autonomous and nonautonomous epidemic models with nonlinear incidence rate of saturated mass action and feedback controls. The global asymptotic stability of disease-free equilibrium and the endemic equilibrium of the autonomous system is established using suitable Lyapunov functional. It is shown that by choosing suitable values of feedback control variables, one can make the disease endemic or extinct as time evolves. Moreover, the effect of coefficient of inhibition on the persistence of disease is also discussed. We discuss the permanence, existence, uniqueness and asymptotic stability of an almost periodic solution of the model. The analytical results obtained in this paper are illustrated with the help of numerical examples.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-016-2892-0</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2016-10, Vol.86 (1), p.337-351 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_miscellaneous_1880025545 |
source | Springer Online Journals Complete |
subjects | Asymptotic properties Automotive Engineering Classical Mechanics Control Control stability Control systems Disease control Dynamical Systems Economic models Engineering Epidemics Feedback control Incidence Mathematical models Mechanical Engineering Nonlinear dynamics Nonlinearity Original Paper Stability Stability analysis Vibration |
title | Global dynamics of autonomous and nonautonomous SI epidemic models with nonlinear incidence rate and feedback controls |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T22%3A56%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20dynamics%20of%20autonomous%20and%20nonautonomous%20SI%20epidemic%20models%20with%20nonlinear%20incidence%20rate%20and%20feedback%20controls&rft.jtitle=Nonlinear%20dynamics&rft.au=Tripathi,%20Jai%20Prakash&rft.date=2016-10-01&rft.volume=86&rft.issue=1&rft.spage=337&rft.epage=351&rft.pages=337-351&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-016-2892-0&rft_dat=%3Cproquest_cross%3E1880025545%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2260136676&rft_id=info:pmid/&rfr_iscdi=true |