Global dynamics of autonomous and nonautonomous SI epidemic models with nonlinear incidence rate and feedback controls

This paper discusses autonomous and nonautonomous epidemic models with nonlinear incidence rate of saturated mass action and feedback controls. The global asymptotic stability of disease-free equilibrium and the endemic equilibrium of the autonomous system is established using suitable Lyapunov func...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2016-10, Vol.86 (1), p.337-351
Hauptverfasser: Tripathi, Jai Prakash, Abbas, Syed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 351
container_issue 1
container_start_page 337
container_title Nonlinear dynamics
container_volume 86
creator Tripathi, Jai Prakash
Abbas, Syed
description This paper discusses autonomous and nonautonomous epidemic models with nonlinear incidence rate of saturated mass action and feedback controls. The global asymptotic stability of disease-free equilibrium and the endemic equilibrium of the autonomous system is established using suitable Lyapunov functional. It is shown that by choosing suitable values of feedback control variables, one can make the disease endemic or extinct as time evolves. Moreover, the effect of coefficient of inhibition on the persistence of disease is also discussed. We discuss the permanence, existence, uniqueness and asymptotic stability of an almost periodic solution of the model. The analytical results obtained in this paper are illustrated with the help of numerical examples.
doi_str_mv 10.1007/s11071-016-2892-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880025545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880025545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-5ff3095f0fd9a14cf41f683cb5a1de61f301cd40a1a8a3c59196800e650013033</originalsourceid><addsrcrecordid>eNp9kc1KxDAURoMoOI4-gLuAGzfVe5MmbZci_oHgQgV3IZMmWm2TMekovr2p40IEXQVyz3dyw0fIPsIRAlTHCREqLABlweqGFbBBZigqXjDZPGySGTSsLKCBh22yk9IzAHAG9Yy8XfRhoXvafng9dCbR4KhejcGHIawS1b6lPvgfN7dX1C671maYDqG1faLv3fg0UX3nrY608ybPvbE06tF-KZy17UKbF2qCH2Po0y7ZcrpPdu_7nJP787O708vi-ubi6vTkujC8qsZCOMehEQ5c22gsjSvRyZqbhdDYWol5iqYtQaOuNTeiwUbWAFYKAOTA-Zwcrr3LGF5XNo1q6JKxfa-9zb9RWGecCVGKjB78Qp_DKvq8nWJMZp2UlfyPmlx1lV-eXLimTAwpRevUMnaDjh8KQU19qXVfKvelpr4U5AxbZ1Jm_aONP8x_hj4Bq2aYKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2260136676</pqid></control><display><type>article</type><title>Global dynamics of autonomous and nonautonomous SI epidemic models with nonlinear incidence rate and feedback controls</title><source>Springer Online Journals Complete</source><creator>Tripathi, Jai Prakash ; Abbas, Syed</creator><creatorcontrib>Tripathi, Jai Prakash ; Abbas, Syed</creatorcontrib><description>This paper discusses autonomous and nonautonomous epidemic models with nonlinear incidence rate of saturated mass action and feedback controls. The global asymptotic stability of disease-free equilibrium and the endemic equilibrium of the autonomous system is established using suitable Lyapunov functional. It is shown that by choosing suitable values of feedback control variables, one can make the disease endemic or extinct as time evolves. Moreover, the effect of coefficient of inhibition on the persistence of disease is also discussed. We discuss the permanence, existence, uniqueness and asymptotic stability of an almost periodic solution of the model. The analytical results obtained in this paper are illustrated with the help of numerical examples.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-016-2892-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Asymptotic properties ; Automotive Engineering ; Classical Mechanics ; Control ; Control stability ; Control systems ; Disease control ; Dynamical Systems ; Economic models ; Engineering ; Epidemics ; Feedback control ; Incidence ; Mathematical models ; Mechanical Engineering ; Nonlinear dynamics ; Nonlinearity ; Original Paper ; Stability ; Stability analysis ; Vibration</subject><ispartof>Nonlinear dynamics, 2016-10, Vol.86 (1), p.337-351</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-5ff3095f0fd9a14cf41f683cb5a1de61f301cd40a1a8a3c59196800e650013033</citedby><cites>FETCH-LOGICAL-c377t-5ff3095f0fd9a14cf41f683cb5a1de61f301cd40a1a8a3c59196800e650013033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-016-2892-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-016-2892-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Tripathi, Jai Prakash</creatorcontrib><creatorcontrib>Abbas, Syed</creatorcontrib><title>Global dynamics of autonomous and nonautonomous SI epidemic models with nonlinear incidence rate and feedback controls</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>This paper discusses autonomous and nonautonomous epidemic models with nonlinear incidence rate of saturated mass action and feedback controls. The global asymptotic stability of disease-free equilibrium and the endemic equilibrium of the autonomous system is established using suitable Lyapunov functional. It is shown that by choosing suitable values of feedback control variables, one can make the disease endemic or extinct as time evolves. Moreover, the effect of coefficient of inhibition on the persistence of disease is also discussed. We discuss the permanence, existence, uniqueness and asymptotic stability of an almost periodic solution of the model. The analytical results obtained in this paper are illustrated with the help of numerical examples.</description><subject>Asymptotic properties</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Control stability</subject><subject>Control systems</subject><subject>Disease control</subject><subject>Dynamical Systems</subject><subject>Economic models</subject><subject>Engineering</subject><subject>Epidemics</subject><subject>Feedback control</subject><subject>Incidence</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Nonlinear dynamics</subject><subject>Nonlinearity</subject><subject>Original Paper</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kc1KxDAURoMoOI4-gLuAGzfVe5MmbZci_oHgQgV3IZMmWm2TMekovr2p40IEXQVyz3dyw0fIPsIRAlTHCREqLABlweqGFbBBZigqXjDZPGySGTSsLKCBh22yk9IzAHAG9Yy8XfRhoXvafng9dCbR4KhejcGHIawS1b6lPvgfN7dX1C671maYDqG1faLv3fg0UX3nrY608ybPvbE06tF-KZy17UKbF2qCH2Po0y7ZcrpPdu_7nJP787O708vi-ubi6vTkujC8qsZCOMehEQ5c22gsjSvRyZqbhdDYWol5iqYtQaOuNTeiwUbWAFYKAOTA-Zwcrr3LGF5XNo1q6JKxfa-9zb9RWGecCVGKjB78Qp_DKvq8nWJMZp2UlfyPmlx1lV-eXLimTAwpRevUMnaDjh8KQU19qXVfKvelpr4U5AxbZ1Jm_aONP8x_hj4Bq2aYKA</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Tripathi, Jai Prakash</creator><creator>Abbas, Syed</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20161001</creationdate><title>Global dynamics of autonomous and nonautonomous SI epidemic models with nonlinear incidence rate and feedback controls</title><author>Tripathi, Jai Prakash ; Abbas, Syed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-5ff3095f0fd9a14cf41f683cb5a1de61f301cd40a1a8a3c59196800e650013033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Asymptotic properties</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Control stability</topic><topic>Control systems</topic><topic>Disease control</topic><topic>Dynamical Systems</topic><topic>Economic models</topic><topic>Engineering</topic><topic>Epidemics</topic><topic>Feedback control</topic><topic>Incidence</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Nonlinear dynamics</topic><topic>Nonlinearity</topic><topic>Original Paper</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tripathi, Jai Prakash</creatorcontrib><creatorcontrib>Abbas, Syed</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tripathi, Jai Prakash</au><au>Abbas, Syed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global dynamics of autonomous and nonautonomous SI epidemic models with nonlinear incidence rate and feedback controls</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>86</volume><issue>1</issue><spage>337</spage><epage>351</epage><pages>337-351</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>This paper discusses autonomous and nonautonomous epidemic models with nonlinear incidence rate of saturated mass action and feedback controls. The global asymptotic stability of disease-free equilibrium and the endemic equilibrium of the autonomous system is established using suitable Lyapunov functional. It is shown that by choosing suitable values of feedback control variables, one can make the disease endemic or extinct as time evolves. Moreover, the effect of coefficient of inhibition on the persistence of disease is also discussed. We discuss the permanence, existence, uniqueness and asymptotic stability of an almost periodic solution of the model. The analytical results obtained in this paper are illustrated with the help of numerical examples.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-016-2892-0</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2016-10, Vol.86 (1), p.337-351
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_miscellaneous_1880025545
source Springer Online Journals Complete
subjects Asymptotic properties
Automotive Engineering
Classical Mechanics
Control
Control stability
Control systems
Disease control
Dynamical Systems
Economic models
Engineering
Epidemics
Feedback control
Incidence
Mathematical models
Mechanical Engineering
Nonlinear dynamics
Nonlinearity
Original Paper
Stability
Stability analysis
Vibration
title Global dynamics of autonomous and nonautonomous SI epidemic models with nonlinear incidence rate and feedback controls
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T22%3A56%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20dynamics%20of%20autonomous%20and%20nonautonomous%20SI%20epidemic%20models%20with%20nonlinear%20incidence%20rate%20and%20feedback%20controls&rft.jtitle=Nonlinear%20dynamics&rft.au=Tripathi,%20Jai%20Prakash&rft.date=2016-10-01&rft.volume=86&rft.issue=1&rft.spage=337&rft.epage=351&rft.pages=337-351&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-016-2892-0&rft_dat=%3Cproquest_cross%3E1880025545%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2260136676&rft_id=info:pmid/&rfr_iscdi=true