Tensor decompositions and data fusion in epileptic electroencephalography and functional magnetic resonance imaging data
Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) record a mixture of ongoing neural processes, physiological and nonphysiological noise. The pattern of interest, such as epileptic activity, is often hidden within this noisy mixture. Therefore, blind source separation (BS...
Gespeichert in:
Veröffentlicht in: | Wiley interdisciplinary reviews. Data mining and knowledge discovery 2017-01, Vol.7 (1), p.np-n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | np |
container_title | Wiley interdisciplinary reviews. Data mining and knowledge discovery |
container_volume | 7 |
creator | Hunyadi, Borbála Dupont, Patrick Van Paesschen, Wim Van Huffel, Sabine |
description | Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) record a mixture of ongoing neural processes, physiological and nonphysiological noise. The pattern of interest, such as epileptic activity, is often hidden within this noisy mixture. Therefore, blind source separation (BSS) techniques, which can retrieve the activity pattern of each underlying source, are very useful. Tensor decomposition techniques are very well suited to solve the BSS problem, as they provide a unique solution under mild constraints. Uniqueness is crucial for an unambiguous interpretation of the components, matching them to true neural processes and characterizing them using the component signatures. Moreover, tensors provide a natural representation of the inherently multidimensional EEG and fMRI, and preserve the structural information defined by the interdependencies among the various modes such as channels, time, patients, etc. Despite the well‐developed theoretical framework, tensor‐based analysis of real, large‐scale clinical datasets is still scarce. Indeed, the application of tensor methods is not straightforward. Finding an appropriate tensor representation, suitable tensor model, and interpretation are application dependent choices, which require expertise both in neuroscience and in multilinear algebra. The aim of this paper is to provide a general guideline for these choices and illustrate them through successful applications in epilepsy. WIREs Data Mining Knowl Discov 2017, 7:e1197. doi: 10.1002/widm.1197
This article is categorized under:
Algorithmic Development > Biological Data Mining
Algorithmic Development > Spatial and Temporal Data Mining
Algorithmic Development > Structure Discovery
Electroencephalography and functional magnetic resonance imaging measure a noisy mixture of brain activity. Tensor‐based blind source separation can estimate and characterize the underlying brain sources and support epilepsy diagnosis. |
doi_str_mv | 10.1002/widm.1197 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880025246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880025246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4417-49671f0c851ac80609db50ad8be52c71faeb27d760be4d6144dd2905da65f0e13</originalsourceid><addsrcrecordid>eNp9kU9LxDAQxYsouKgHv0HAix7qJtk0TY7if1C8KB5LmkzXLG1Skxbdb2-6Kx4EnUuGl988mHlZdkzwOcGYzj-s6c4JkeVONiOS0ZyVstj96UW5nx3FuMKpFlQIQWfZ5zO46AMyoH3X-2gH611Eyhlk1KBQM8YkIOsQ9LaFfrAaQQt6CB6chv5NtX4ZVP-23sw0o9OTg2pRp5YOJjxATEKCkU2adcuN82G216g2wtH3e5C93Fw_X97lD0-395cXD7lmjJQ5k7wkDdaiIEoLzLE0dYGVETUUVKcvBTUtTclxDcxwwpgxVOLCKF40GMjiIDvd-vbBv48Qh6qzUUPbKgd-jBURIp2uoIwn9OQXuvJjSLskSpaCLiTm4l9KMMk445wm6mxL6eBjDNBUfUjrh3VFcDWFVU1hVVNYiZ1v2Y904fXfYPV6f_W4mfgCIu-XuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1849464662</pqid></control><display><type>article</type><title>Tensor decompositions and data fusion in epileptic electroencephalography and functional magnetic resonance imaging data</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Hunyadi, Borbála ; Dupont, Patrick ; Van Paesschen, Wim ; Van Huffel, Sabine</creator><creatorcontrib>Hunyadi, Borbála ; Dupont, Patrick ; Van Paesschen, Wim ; Van Huffel, Sabine</creatorcontrib><description>Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) record a mixture of ongoing neural processes, physiological and nonphysiological noise. The pattern of interest, such as epileptic activity, is often hidden within this noisy mixture. Therefore, blind source separation (BSS) techniques, which can retrieve the activity pattern of each underlying source, are very useful. Tensor decomposition techniques are very well suited to solve the BSS problem, as they provide a unique solution under mild constraints. Uniqueness is crucial for an unambiguous interpretation of the components, matching them to true neural processes and characterizing them using the component signatures. Moreover, tensors provide a natural representation of the inherently multidimensional EEG and fMRI, and preserve the structural information defined by the interdependencies among the various modes such as channels, time, patients, etc. Despite the well‐developed theoretical framework, tensor‐based analysis of real, large‐scale clinical datasets is still scarce. Indeed, the application of tensor methods is not straightforward. Finding an appropriate tensor representation, suitable tensor model, and interpretation are application dependent choices, which require expertise both in neuroscience and in multilinear algebra. The aim of this paper is to provide a general guideline for these choices and illustrate them through successful applications in epilepsy. WIREs Data Mining Knowl Discov 2017, 7:e1197. doi: 10.1002/widm.1197
This article is categorized under:
Algorithmic Development > Biological Data Mining
Algorithmic Development > Spatial and Temporal Data Mining
Algorithmic Development > Structure Discovery
Electroencephalography and functional magnetic resonance imaging measure a noisy mixture of brain activity. Tensor‐based blind source separation can estimate and characterize the underlying brain sources and support epilepsy diagnosis.</description><identifier>ISSN: 1942-4787</identifier><identifier>EISSN: 1942-4795</identifier><identifier>DOI: 10.1002/widm.1197</identifier><language>eng</language><publisher>Hoboken, USA: Wiley Periodicals, Inc</publisher><subject>Algorithms ; Brain ; Data integration ; Data mining ; Decomposition ; Electroencephalography ; Epilepsy ; Magnetic resonance imaging ; Mathematical analysis ; Multisensor fusion ; NMR ; Nuclear magnetic resonance ; Representations ; Signal processing ; Spatial data ; Tensors ; Uniqueness ; Wire</subject><ispartof>Wiley interdisciplinary reviews. Data mining and knowledge discovery, 2017-01, Vol.7 (1), p.np-n/a</ispartof><rights>2016 The Authors. published by John Wiley & Sons, Ltd.</rights><rights>2017 John Wiley & Sons, Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4417-49671f0c851ac80609db50ad8be52c71faeb27d760be4d6144dd2905da65f0e13</citedby><cites>FETCH-LOGICAL-c4417-49671f0c851ac80609db50ad8be52c71faeb27d760be4d6144dd2905da65f0e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwidm.1197$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwidm.1197$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Hunyadi, Borbála</creatorcontrib><creatorcontrib>Dupont, Patrick</creatorcontrib><creatorcontrib>Van Paesschen, Wim</creatorcontrib><creatorcontrib>Van Huffel, Sabine</creatorcontrib><title>Tensor decompositions and data fusion in epileptic electroencephalography and functional magnetic resonance imaging data</title><title>Wiley interdisciplinary reviews. Data mining and knowledge discovery</title><description>Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) record a mixture of ongoing neural processes, physiological and nonphysiological noise. The pattern of interest, such as epileptic activity, is often hidden within this noisy mixture. Therefore, blind source separation (BSS) techniques, which can retrieve the activity pattern of each underlying source, are very useful. Tensor decomposition techniques are very well suited to solve the BSS problem, as they provide a unique solution under mild constraints. Uniqueness is crucial for an unambiguous interpretation of the components, matching them to true neural processes and characterizing them using the component signatures. Moreover, tensors provide a natural representation of the inherently multidimensional EEG and fMRI, and preserve the structural information defined by the interdependencies among the various modes such as channels, time, patients, etc. Despite the well‐developed theoretical framework, tensor‐based analysis of real, large‐scale clinical datasets is still scarce. Indeed, the application of tensor methods is not straightforward. Finding an appropriate tensor representation, suitable tensor model, and interpretation are application dependent choices, which require expertise both in neuroscience and in multilinear algebra. The aim of this paper is to provide a general guideline for these choices and illustrate them through successful applications in epilepsy. WIREs Data Mining Knowl Discov 2017, 7:e1197. doi: 10.1002/widm.1197
This article is categorized under:
Algorithmic Development > Biological Data Mining
Algorithmic Development > Spatial and Temporal Data Mining
Algorithmic Development > Structure Discovery
Electroencephalography and functional magnetic resonance imaging measure a noisy mixture of brain activity. Tensor‐based blind source separation can estimate and characterize the underlying brain sources and support epilepsy diagnosis.</description><subject>Algorithms</subject><subject>Brain</subject><subject>Data integration</subject><subject>Data mining</subject><subject>Decomposition</subject><subject>Electroencephalography</subject><subject>Epilepsy</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical analysis</subject><subject>Multisensor fusion</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Representations</subject><subject>Signal processing</subject><subject>Spatial data</subject><subject>Tensors</subject><subject>Uniqueness</subject><subject>Wire</subject><issn>1942-4787</issn><issn>1942-4795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kU9LxDAQxYsouKgHv0HAix7qJtk0TY7if1C8KB5LmkzXLG1Skxbdb2-6Kx4EnUuGl988mHlZdkzwOcGYzj-s6c4JkeVONiOS0ZyVstj96UW5nx3FuMKpFlQIQWfZ5zO46AMyoH3X-2gH611Eyhlk1KBQM8YkIOsQ9LaFfrAaQQt6CB6chv5NtX4ZVP-23sw0o9OTg2pRp5YOJjxATEKCkU2adcuN82G216g2wtH3e5C93Fw_X97lD0-395cXD7lmjJQ5k7wkDdaiIEoLzLE0dYGVETUUVKcvBTUtTclxDcxwwpgxVOLCKF40GMjiIDvd-vbBv48Qh6qzUUPbKgd-jBURIp2uoIwn9OQXuvJjSLskSpaCLiTm4l9KMMk445wm6mxL6eBjDNBUfUjrh3VFcDWFVU1hVVNYiZ1v2Y904fXfYPV6f_W4mfgCIu-XuQ</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Hunyadi, Borbála</creator><creator>Dupont, Patrick</creator><creator>Van Paesschen, Wim</creator><creator>Van Huffel, Sabine</creator><general>Wiley Periodicals, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201701</creationdate><title>Tensor decompositions and data fusion in epileptic electroencephalography and functional magnetic resonance imaging data</title><author>Hunyadi, Borbála ; Dupont, Patrick ; Van Paesschen, Wim ; Van Huffel, Sabine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4417-49671f0c851ac80609db50ad8be52c71faeb27d760be4d6144dd2905da65f0e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Brain</topic><topic>Data integration</topic><topic>Data mining</topic><topic>Decomposition</topic><topic>Electroencephalography</topic><topic>Epilepsy</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical analysis</topic><topic>Multisensor fusion</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Representations</topic><topic>Signal processing</topic><topic>Spatial data</topic><topic>Tensors</topic><topic>Uniqueness</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hunyadi, Borbála</creatorcontrib><creatorcontrib>Dupont, Patrick</creatorcontrib><creatorcontrib>Van Paesschen, Wim</creatorcontrib><creatorcontrib>Van Huffel, Sabine</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Wiley interdisciplinary reviews. Data mining and knowledge discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hunyadi, Borbála</au><au>Dupont, Patrick</au><au>Van Paesschen, Wim</au><au>Van Huffel, Sabine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tensor decompositions and data fusion in epileptic electroencephalography and functional magnetic resonance imaging data</atitle><jtitle>Wiley interdisciplinary reviews. Data mining and knowledge discovery</jtitle><date>2017-01</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>1942-4787</issn><eissn>1942-4795</eissn><abstract>Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) record a mixture of ongoing neural processes, physiological and nonphysiological noise. The pattern of interest, such as epileptic activity, is often hidden within this noisy mixture. Therefore, blind source separation (BSS) techniques, which can retrieve the activity pattern of each underlying source, are very useful. Tensor decomposition techniques are very well suited to solve the BSS problem, as they provide a unique solution under mild constraints. Uniqueness is crucial for an unambiguous interpretation of the components, matching them to true neural processes and characterizing them using the component signatures. Moreover, tensors provide a natural representation of the inherently multidimensional EEG and fMRI, and preserve the structural information defined by the interdependencies among the various modes such as channels, time, patients, etc. Despite the well‐developed theoretical framework, tensor‐based analysis of real, large‐scale clinical datasets is still scarce. Indeed, the application of tensor methods is not straightforward. Finding an appropriate tensor representation, suitable tensor model, and interpretation are application dependent choices, which require expertise both in neuroscience and in multilinear algebra. The aim of this paper is to provide a general guideline for these choices and illustrate them through successful applications in epilepsy. WIREs Data Mining Knowl Discov 2017, 7:e1197. doi: 10.1002/widm.1197
This article is categorized under:
Algorithmic Development > Biological Data Mining
Algorithmic Development > Spatial and Temporal Data Mining
Algorithmic Development > Structure Discovery
Electroencephalography and functional magnetic resonance imaging measure a noisy mixture of brain activity. Tensor‐based blind source separation can estimate and characterize the underlying brain sources and support epilepsy diagnosis.</abstract><cop>Hoboken, USA</cop><pub>Wiley Periodicals, Inc</pub><doi>10.1002/widm.1197</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1942-4787 |
ispartof | Wiley interdisciplinary reviews. Data mining and knowledge discovery, 2017-01, Vol.7 (1), p.np-n/a |
issn | 1942-4787 1942-4795 |
language | eng |
recordid | cdi_proquest_miscellaneous_1880025246 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Algorithms Brain Data integration Data mining Decomposition Electroencephalography Epilepsy Magnetic resonance imaging Mathematical analysis Multisensor fusion NMR Nuclear magnetic resonance Representations Signal processing Spatial data Tensors Uniqueness Wire |
title | Tensor decompositions and data fusion in epileptic electroencephalography and functional magnetic resonance imaging data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T04%3A08%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tensor%20decompositions%20and%20data%20fusion%20in%20epileptic%20electroencephalography%20and%20functional%20magnetic%20resonance%20imaging%20data&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20Data%20mining%20and%20knowledge%20discovery&rft.au=Hunyadi,%20Borb%C3%A1la&rft.date=2017-01&rft.volume=7&rft.issue=1&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=1942-4787&rft.eissn=1942-4795&rft_id=info:doi/10.1002/widm.1197&rft_dat=%3Cproquest_cross%3E1880025246%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1849464662&rft_id=info:pmid/&rfr_iscdi=true |