Tensor decompositions and data fusion in epileptic electroencephalography and functional magnetic resonance imaging data

Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) record a mixture of ongoing neural processes, physiological and nonphysiological noise. The pattern of interest, such as epileptic activity, is often hidden within this noisy mixture. Therefore, blind source separation (BS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wiley interdisciplinary reviews. Data mining and knowledge discovery 2017-01, Vol.7 (1), p.np-n/a
Hauptverfasser: Hunyadi, Borbála, Dupont, Patrick, Van Paesschen, Wim, Van Huffel, Sabine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page np
container_title Wiley interdisciplinary reviews. Data mining and knowledge discovery
container_volume 7
creator Hunyadi, Borbála
Dupont, Patrick
Van Paesschen, Wim
Van Huffel, Sabine
description Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) record a mixture of ongoing neural processes, physiological and nonphysiological noise. The pattern of interest, such as epileptic activity, is often hidden within this noisy mixture. Therefore, blind source separation (BSS) techniques, which can retrieve the activity pattern of each underlying source, are very useful. Tensor decomposition techniques are very well suited to solve the BSS problem, as they provide a unique solution under mild constraints. Uniqueness is crucial for an unambiguous interpretation of the components, matching them to true neural processes and characterizing them using the component signatures. Moreover, tensors provide a natural representation of the inherently multidimensional EEG and fMRI, and preserve the structural information defined by the interdependencies among the various modes such as channels, time, patients, etc. Despite the well‐developed theoretical framework, tensor‐based analysis of real, large‐scale clinical datasets is still scarce. Indeed, the application of tensor methods is not straightforward. Finding an appropriate tensor representation, suitable tensor model, and interpretation are application dependent choices, which require expertise both in neuroscience and in multilinear algebra. The aim of this paper is to provide a general guideline for these choices and illustrate them through successful applications in epilepsy. WIREs Data Mining Knowl Discov 2017, 7:e1197. doi: 10.1002/widm.1197 This article is categorized under: Algorithmic Development > Biological Data Mining Algorithmic Development > Spatial and Temporal Data Mining Algorithmic Development > Structure Discovery Electroencephalography and functional magnetic resonance imaging measure a noisy mixture of brain activity. Tensor‐based blind source separation can estimate and characterize the underlying brain sources and support epilepsy diagnosis.
doi_str_mv 10.1002/widm.1197
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880025246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880025246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4417-49671f0c851ac80609db50ad8be52c71faeb27d760be4d6144dd2905da65f0e13</originalsourceid><addsrcrecordid>eNp9kU9LxDAQxYsouKgHv0HAix7qJtk0TY7if1C8KB5LmkzXLG1Skxbdb2-6Kx4EnUuGl988mHlZdkzwOcGYzj-s6c4JkeVONiOS0ZyVstj96UW5nx3FuMKpFlQIQWfZ5zO46AMyoH3X-2gH611Eyhlk1KBQM8YkIOsQ9LaFfrAaQQt6CB6chv5NtX4ZVP-23sw0o9OTg2pRp5YOJjxATEKCkU2adcuN82G216g2wtH3e5C93Fw_X97lD0-395cXD7lmjJQ5k7wkDdaiIEoLzLE0dYGVETUUVKcvBTUtTclxDcxwwpgxVOLCKF40GMjiIDvd-vbBv48Qh6qzUUPbKgd-jBURIp2uoIwn9OQXuvJjSLskSpaCLiTm4l9KMMk445wm6mxL6eBjDNBUfUjrh3VFcDWFVU1hVVNYiZ1v2Y904fXfYPV6f_W4mfgCIu-XuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1849464662</pqid></control><display><type>article</type><title>Tensor decompositions and data fusion in epileptic electroencephalography and functional magnetic resonance imaging data</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Hunyadi, Borbála ; Dupont, Patrick ; Van Paesschen, Wim ; Van Huffel, Sabine</creator><creatorcontrib>Hunyadi, Borbála ; Dupont, Patrick ; Van Paesschen, Wim ; Van Huffel, Sabine</creatorcontrib><description>Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) record a mixture of ongoing neural processes, physiological and nonphysiological noise. The pattern of interest, such as epileptic activity, is often hidden within this noisy mixture. Therefore, blind source separation (BSS) techniques, which can retrieve the activity pattern of each underlying source, are very useful. Tensor decomposition techniques are very well suited to solve the BSS problem, as they provide a unique solution under mild constraints. Uniqueness is crucial for an unambiguous interpretation of the components, matching them to true neural processes and characterizing them using the component signatures. Moreover, tensors provide a natural representation of the inherently multidimensional EEG and fMRI, and preserve the structural information defined by the interdependencies among the various modes such as channels, time, patients, etc. Despite the well‐developed theoretical framework, tensor‐based analysis of real, large‐scale clinical datasets is still scarce. Indeed, the application of tensor methods is not straightforward. Finding an appropriate tensor representation, suitable tensor model, and interpretation are application dependent choices, which require expertise both in neuroscience and in multilinear algebra. The aim of this paper is to provide a general guideline for these choices and illustrate them through successful applications in epilepsy. WIREs Data Mining Knowl Discov 2017, 7:e1197. doi: 10.1002/widm.1197 This article is categorized under: Algorithmic Development &gt; Biological Data Mining Algorithmic Development &gt; Spatial and Temporal Data Mining Algorithmic Development &gt; Structure Discovery Electroencephalography and functional magnetic resonance imaging measure a noisy mixture of brain activity. Tensor‐based blind source separation can estimate and characterize the underlying brain sources and support epilepsy diagnosis.</description><identifier>ISSN: 1942-4787</identifier><identifier>EISSN: 1942-4795</identifier><identifier>DOI: 10.1002/widm.1197</identifier><language>eng</language><publisher>Hoboken, USA: Wiley Periodicals, Inc</publisher><subject>Algorithms ; Brain ; Data integration ; Data mining ; Decomposition ; Electroencephalography ; Epilepsy ; Magnetic resonance imaging ; Mathematical analysis ; Multisensor fusion ; NMR ; Nuclear magnetic resonance ; Representations ; Signal processing ; Spatial data ; Tensors ; Uniqueness ; Wire</subject><ispartof>Wiley interdisciplinary reviews. Data mining and knowledge discovery, 2017-01, Vol.7 (1), p.np-n/a</ispartof><rights>2016 The Authors. published by John Wiley &amp; Sons, Ltd.</rights><rights>2017 John Wiley &amp; Sons, Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4417-49671f0c851ac80609db50ad8be52c71faeb27d760be4d6144dd2905da65f0e13</citedby><cites>FETCH-LOGICAL-c4417-49671f0c851ac80609db50ad8be52c71faeb27d760be4d6144dd2905da65f0e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwidm.1197$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwidm.1197$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Hunyadi, Borbála</creatorcontrib><creatorcontrib>Dupont, Patrick</creatorcontrib><creatorcontrib>Van Paesschen, Wim</creatorcontrib><creatorcontrib>Van Huffel, Sabine</creatorcontrib><title>Tensor decompositions and data fusion in epileptic electroencephalography and functional magnetic resonance imaging data</title><title>Wiley interdisciplinary reviews. Data mining and knowledge discovery</title><description>Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) record a mixture of ongoing neural processes, physiological and nonphysiological noise. The pattern of interest, such as epileptic activity, is often hidden within this noisy mixture. Therefore, blind source separation (BSS) techniques, which can retrieve the activity pattern of each underlying source, are very useful. Tensor decomposition techniques are very well suited to solve the BSS problem, as they provide a unique solution under mild constraints. Uniqueness is crucial for an unambiguous interpretation of the components, matching them to true neural processes and characterizing them using the component signatures. Moreover, tensors provide a natural representation of the inherently multidimensional EEG and fMRI, and preserve the structural information defined by the interdependencies among the various modes such as channels, time, patients, etc. Despite the well‐developed theoretical framework, tensor‐based analysis of real, large‐scale clinical datasets is still scarce. Indeed, the application of tensor methods is not straightforward. Finding an appropriate tensor representation, suitable tensor model, and interpretation are application dependent choices, which require expertise both in neuroscience and in multilinear algebra. The aim of this paper is to provide a general guideline for these choices and illustrate them through successful applications in epilepsy. WIREs Data Mining Knowl Discov 2017, 7:e1197. doi: 10.1002/widm.1197 This article is categorized under: Algorithmic Development &gt; Biological Data Mining Algorithmic Development &gt; Spatial and Temporal Data Mining Algorithmic Development &gt; Structure Discovery Electroencephalography and functional magnetic resonance imaging measure a noisy mixture of brain activity. Tensor‐based blind source separation can estimate and characterize the underlying brain sources and support epilepsy diagnosis.</description><subject>Algorithms</subject><subject>Brain</subject><subject>Data integration</subject><subject>Data mining</subject><subject>Decomposition</subject><subject>Electroencephalography</subject><subject>Epilepsy</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical analysis</subject><subject>Multisensor fusion</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Representations</subject><subject>Signal processing</subject><subject>Spatial data</subject><subject>Tensors</subject><subject>Uniqueness</subject><subject>Wire</subject><issn>1942-4787</issn><issn>1942-4795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kU9LxDAQxYsouKgHv0HAix7qJtk0TY7if1C8KB5LmkzXLG1Skxbdb2-6Kx4EnUuGl988mHlZdkzwOcGYzj-s6c4JkeVONiOS0ZyVstj96UW5nx3FuMKpFlQIQWfZ5zO46AMyoH3X-2gH611Eyhlk1KBQM8YkIOsQ9LaFfrAaQQt6CB6chv5NtX4ZVP-23sw0o9OTg2pRp5YOJjxATEKCkU2adcuN82G216g2wtH3e5C93Fw_X97lD0-395cXD7lmjJQ5k7wkDdaiIEoLzLE0dYGVETUUVKcvBTUtTclxDcxwwpgxVOLCKF40GMjiIDvd-vbBv48Qh6qzUUPbKgd-jBURIp2uoIwn9OQXuvJjSLskSpaCLiTm4l9KMMk445wm6mxL6eBjDNBUfUjrh3VFcDWFVU1hVVNYiZ1v2Y904fXfYPV6f_W4mfgCIu-XuQ</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Hunyadi, Borbála</creator><creator>Dupont, Patrick</creator><creator>Van Paesschen, Wim</creator><creator>Van Huffel, Sabine</creator><general>Wiley Periodicals, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201701</creationdate><title>Tensor decompositions and data fusion in epileptic electroencephalography and functional magnetic resonance imaging data</title><author>Hunyadi, Borbála ; Dupont, Patrick ; Van Paesschen, Wim ; Van Huffel, Sabine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4417-49671f0c851ac80609db50ad8be52c71faeb27d760be4d6144dd2905da65f0e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Brain</topic><topic>Data integration</topic><topic>Data mining</topic><topic>Decomposition</topic><topic>Electroencephalography</topic><topic>Epilepsy</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical analysis</topic><topic>Multisensor fusion</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Representations</topic><topic>Signal processing</topic><topic>Spatial data</topic><topic>Tensors</topic><topic>Uniqueness</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hunyadi, Borbála</creatorcontrib><creatorcontrib>Dupont, Patrick</creatorcontrib><creatorcontrib>Van Paesschen, Wim</creatorcontrib><creatorcontrib>Van Huffel, Sabine</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Wiley interdisciplinary reviews. Data mining and knowledge discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hunyadi, Borbála</au><au>Dupont, Patrick</au><au>Van Paesschen, Wim</au><au>Van Huffel, Sabine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tensor decompositions and data fusion in epileptic electroencephalography and functional magnetic resonance imaging data</atitle><jtitle>Wiley interdisciplinary reviews. Data mining and knowledge discovery</jtitle><date>2017-01</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>1942-4787</issn><eissn>1942-4795</eissn><abstract>Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) record a mixture of ongoing neural processes, physiological and nonphysiological noise. The pattern of interest, such as epileptic activity, is often hidden within this noisy mixture. Therefore, blind source separation (BSS) techniques, which can retrieve the activity pattern of each underlying source, are very useful. Tensor decomposition techniques are very well suited to solve the BSS problem, as they provide a unique solution under mild constraints. Uniqueness is crucial for an unambiguous interpretation of the components, matching them to true neural processes and characterizing them using the component signatures. Moreover, tensors provide a natural representation of the inherently multidimensional EEG and fMRI, and preserve the structural information defined by the interdependencies among the various modes such as channels, time, patients, etc. Despite the well‐developed theoretical framework, tensor‐based analysis of real, large‐scale clinical datasets is still scarce. Indeed, the application of tensor methods is not straightforward. Finding an appropriate tensor representation, suitable tensor model, and interpretation are application dependent choices, which require expertise both in neuroscience and in multilinear algebra. The aim of this paper is to provide a general guideline for these choices and illustrate them through successful applications in epilepsy. WIREs Data Mining Knowl Discov 2017, 7:e1197. doi: 10.1002/widm.1197 This article is categorized under: Algorithmic Development &gt; Biological Data Mining Algorithmic Development &gt; Spatial and Temporal Data Mining Algorithmic Development &gt; Structure Discovery Electroencephalography and functional magnetic resonance imaging measure a noisy mixture of brain activity. Tensor‐based blind source separation can estimate and characterize the underlying brain sources and support epilepsy diagnosis.</abstract><cop>Hoboken, USA</cop><pub>Wiley Periodicals, Inc</pub><doi>10.1002/widm.1197</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1942-4787
ispartof Wiley interdisciplinary reviews. Data mining and knowledge discovery, 2017-01, Vol.7 (1), p.np-n/a
issn 1942-4787
1942-4795
language eng
recordid cdi_proquest_miscellaneous_1880025246
source Wiley Online Library - AutoHoldings Journals
subjects Algorithms
Brain
Data integration
Data mining
Decomposition
Electroencephalography
Epilepsy
Magnetic resonance imaging
Mathematical analysis
Multisensor fusion
NMR
Nuclear magnetic resonance
Representations
Signal processing
Spatial data
Tensors
Uniqueness
Wire
title Tensor decompositions and data fusion in epileptic electroencephalography and functional magnetic resonance imaging data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T04%3A08%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tensor%20decompositions%20and%20data%20fusion%20in%20epileptic%20electroencephalography%20and%20functional%20magnetic%20resonance%20imaging%20data&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20Data%20mining%20and%20knowledge%20discovery&rft.au=Hunyadi,%20Borb%C3%A1la&rft.date=2017-01&rft.volume=7&rft.issue=1&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=1942-4787&rft.eissn=1942-4795&rft_id=info:doi/10.1002/widm.1197&rft_dat=%3Cproquest_cross%3E1880025246%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1849464662&rft_id=info:pmid/&rfr_iscdi=true