Regimes of radial growth for Ga-catalyzed GaAs nanowires

We present a non-stationary growth model of Ga-catalyzed GaAs nanowires which is based on the two kinetic equations for the nanowire elongation rate and a time-dependent base radius of the droplet. We show that self-catalyzed nanowire growth is principally different from the Au-catalyzed one because...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2016-07, Vol.122 (7), p.1-7, Article 671
Hauptverfasser: Dubrovskii, V. G., Berdnikov, Y., Sibirev, N. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 7
container_start_page 1
container_title Applied physics. A, Materials science & processing
container_volume 122
creator Dubrovskii, V. G.
Berdnikov, Y.
Sibirev, N. V.
description We present a non-stationary growth model of Ga-catalyzed GaAs nanowires which is based on the two kinetic equations for the nanowire elongation rate and a time-dependent base radius of the droplet. We show that self-catalyzed nanowire growth is principally different from the Au-catalyzed one because a stationary droplet size cannot be maintained at all times. Close examination of the model enables us to separate different regimes of radial growth in which the droplet shrinks, inflates or converges to a certain stationary size as nanowires grow, depending on the initial droplet radius and the growth conditions. We also discuss some experimental data on the growth modes of Ga-catalyzed GaAs nanowires from the viewpoint of the obtained results.
doi_str_mv 10.1007/s00339-016-0179-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880024618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880024618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-1413071da333fbf38e796fe4e9b926a8d544dc4ec649c274cc2f4692902135863</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNsevUQnH80mx1K0CoIgeg5pdlK3bDc12VLqrzdlPTswDAPPOzAPIbcM7hlA_ZABhDAUmCpdGyrPyIRJwSkoAedkAkbWVAujLslVzhsoJTmfEP2O63aLuYqhSq5pXVetUzwMX1WIqVo66t3guuMPNmWZ56p3fTy0CfM1uQiuy3jzN6fk8-nxY_FMX9-WL4v5K_WCs4EyyQTUrHFCiLAKQmNtVECJZmW4crqZSdl4iV5J43ktvedBKsMNcCZmWokpuRvv7lL83mMe7LbNHrvO9Rj32TKtAbhUTBeUjahPMeeEwe5Su3XpaBnYkyU7WrLFkj1ZsrJk-JjJhe3XmOwm7lNfPvon9AvqFWgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880024618</pqid></control><display><type>article</type><title>Regimes of radial growth for Ga-catalyzed GaAs nanowires</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dubrovskii, V. G. ; Berdnikov, Y. ; Sibirev, N. V.</creator><creatorcontrib>Dubrovskii, V. G. ; Berdnikov, Y. ; Sibirev, N. V.</creatorcontrib><description>We present a non-stationary growth model of Ga-catalyzed GaAs nanowires which is based on the two kinetic equations for the nanowire elongation rate and a time-dependent base radius of the droplet. We show that self-catalyzed nanowire growth is principally different from the Au-catalyzed one because a stationary droplet size cannot be maintained at all times. Close examination of the model enables us to separate different regimes of radial growth in which the droplet shrinks, inflates or converges to a certain stationary size as nanowires grow, depending on the initial droplet radius and the growth conditions. We also discuss some experimental data on the growth modes of Ga-catalyzed GaAs nanowires from the viewpoint of the obtained results.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-016-0179-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Characterization and Evaluation of Materials ; Condensed Matter Physics ; Droplets ; Elongation ; Gallium arsenide ; Kinetic equations ; Machines ; Manufacturing ; Materials science ; Nanotechnology ; Nanowires ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Smart Materials and Structures ; Surfaces and Interfaces ; Thin Films ; Time dependence</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2016-07, Vol.122 (7), p.1-7, Article 671</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-1413071da333fbf38e796fe4e9b926a8d544dc4ec649c274cc2f4692902135863</citedby><cites>FETCH-LOGICAL-c321t-1413071da333fbf38e796fe4e9b926a8d544dc4ec649c274cc2f4692902135863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-016-0179-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-016-0179-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Dubrovskii, V. G.</creatorcontrib><creatorcontrib>Berdnikov, Y.</creatorcontrib><creatorcontrib>Sibirev, N. V.</creatorcontrib><title>Regimes of radial growth for Ga-catalyzed GaAs nanowires</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>We present a non-stationary growth model of Ga-catalyzed GaAs nanowires which is based on the two kinetic equations for the nanowire elongation rate and a time-dependent base radius of the droplet. We show that self-catalyzed nanowire growth is principally different from the Au-catalyzed one because a stationary droplet size cannot be maintained at all times. Close examination of the model enables us to separate different regimes of radial growth in which the droplet shrinks, inflates or converges to a certain stationary size as nanowires grow, depending on the initial droplet radius and the growth conditions. We also discuss some experimental data on the growth modes of Ga-catalyzed GaAs nanowires from the viewpoint of the obtained results.</description><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Droplets</subject><subject>Elongation</subject><subject>Gallium arsenide</subject><subject>Kinetic equations</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Smart Materials and Structures</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Time dependence</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNsevUQnH80mx1K0CoIgeg5pdlK3bDc12VLqrzdlPTswDAPPOzAPIbcM7hlA_ZABhDAUmCpdGyrPyIRJwSkoAedkAkbWVAujLslVzhsoJTmfEP2O63aLuYqhSq5pXVetUzwMX1WIqVo66t3guuMPNmWZ56p3fTy0CfM1uQiuy3jzN6fk8-nxY_FMX9-WL4v5K_WCs4EyyQTUrHFCiLAKQmNtVECJZmW4crqZSdl4iV5J43ktvedBKsMNcCZmWokpuRvv7lL83mMe7LbNHrvO9Rj32TKtAbhUTBeUjahPMeeEwe5Su3XpaBnYkyU7WrLFkj1ZsrJk-JjJhe3XmOwm7lNfPvon9AvqFWgg</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Dubrovskii, V. G.</creator><creator>Berdnikov, Y.</creator><creator>Sibirev, N. V.</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160701</creationdate><title>Regimes of radial growth for Ga-catalyzed GaAs nanowires</title><author>Dubrovskii, V. G. ; Berdnikov, Y. ; Sibirev, N. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-1413071da333fbf38e796fe4e9b926a8d544dc4ec649c274cc2f4692902135863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Droplets</topic><topic>Elongation</topic><topic>Gallium arsenide</topic><topic>Kinetic equations</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Smart Materials and Structures</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dubrovskii, V. G.</creatorcontrib><creatorcontrib>Berdnikov, Y.</creatorcontrib><creatorcontrib>Sibirev, N. V.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dubrovskii, V. G.</au><au>Berdnikov, Y.</au><au>Sibirev, N. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regimes of radial growth for Ga-catalyzed GaAs nanowires</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2016-07-01</date><risdate>2016</risdate><volume>122</volume><issue>7</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><artnum>671</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>We present a non-stationary growth model of Ga-catalyzed GaAs nanowires which is based on the two kinetic equations for the nanowire elongation rate and a time-dependent base radius of the droplet. We show that self-catalyzed nanowire growth is principally different from the Au-catalyzed one because a stationary droplet size cannot be maintained at all times. Close examination of the model enables us to separate different regimes of radial growth in which the droplet shrinks, inflates or converges to a certain stationary size as nanowires grow, depending on the initial droplet radius and the growth conditions. We also discuss some experimental data on the growth modes of Ga-catalyzed GaAs nanowires from the viewpoint of the obtained results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-016-0179-4</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2016-07, Vol.122 (7), p.1-7, Article 671
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_miscellaneous_1880024618
source SpringerLink Journals - AutoHoldings
subjects Characterization and Evaluation of Materials
Condensed Matter Physics
Droplets
Elongation
Gallium arsenide
Kinetic equations
Machines
Manufacturing
Materials science
Nanotechnology
Nanowires
Optical and Electronic Materials
Physics
Physics and Astronomy
Processes
Smart Materials and Structures
Surfaces and Interfaces
Thin Films
Time dependence
title Regimes of radial growth for Ga-catalyzed GaAs nanowires
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A32%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regimes%20of%20radial%20growth%20for%20Ga-catalyzed%20GaAs%20nanowires&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Dubrovskii,%20V.%20G.&rft.date=2016-07-01&rft.volume=122&rft.issue=7&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.artnum=671&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-016-0179-4&rft_dat=%3Cproquest_cross%3E1880024618%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880024618&rft_id=info:pmid/&rfr_iscdi=true