Study on the microstructural evolution of AZ31 magnesium alloy in a vertical twin-roll casting process

Finite element method was employed to calculate the macroflow velocity and temperature distribution of the pool domain’s biting zone in twin-roll casting. Macroanalysis results were inducted as boundary conditions into microanalysis. Phase field method (PFM) was adopted to investigate the microstruc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2016-02, Vol.122 (2), p.1-10, Article 91
Hauptverfasser: Chen, Ming, Hu, Xiao-Dong, Han, Bing, Deng, Xiao-Hu, Ju, Dong-Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 2
container_start_page 1
container_title Applied physics. A, Materials science & processing
container_volume 122
creator Chen, Ming
Hu, Xiao-Dong
Han, Bing
Deng, Xiao-Hu
Ju, Dong-Ying
description Finite element method was employed to calculate the macroflow velocity and temperature distribution of the pool domain’s biting zone in twin-roll casting. Macroanalysis results were inducted as boundary conditions into microanalysis. Phase field method (PFM) was adopted to investigate the microstructure evolution. Based on the Kim–Kim–Suzuki model, the effect of metal flow velocity was coupled on the solute gradient item, and the real physical parameters of AZ31 were inducted into the numerical calculation. We used the marker and cell method in the discrete element solution of microstructural pattern prediction of AZ31 magnesium alloys. The different flow velocity values that predicted the columnar dendrite evolution were discussed in detail. Numerical simulation results were also compared with the experiment analysis. The microstructure obtained by PFM agrees with the actual pattern observed via optical microscopy.
doi_str_mv 10.1007/s00339-016-9627-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880024517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880024517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-1f0befb3eff760a72bcaaad42cdbf0763363d0a0e770e737e65b9de33fab654e3</originalsourceid><addsrcrecordid>eNp9kDFvHCEQhZEVS77Y_gHuKNOQDLAHt6VlJXEkSy6cNG4Qyw4XTuxyAdbR_Xtz2tQZaTTFvDej9xFyx-EzB9BfCoCUPQOuWK-EZt0F2fBOCgZKwgeygb7TbCd7dUU-lnKAVp0QG-Jf6jKeaJpp_Y10Ci6nUvPi6pJtpPiW4lJD2yZP718lp5Pdz1jCMlEbYzrRMFNL3zDX4Jq-_g0zyylG6mypYd7TY04OS7khl97Ggrf_5jX59e3rz4dH9vT8_cfD_RNzUvDKuIcB_SDRe63AajE4a-3YCTcOHrSSUskRLKDWraVGtR36EaX0dlDbDuU1-bTebX__LFiqmUJxGKOdMS3F8N0OQHRbrpuUr9Jz5JLRm2MOk80nw8GcmZqVqWlMzZmp6ZpHrJ7StPMeszmkJc8t0X9M73Dle-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880024517</pqid></control><display><type>article</type><title>Study on the microstructural evolution of AZ31 magnesium alloy in a vertical twin-roll casting process</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Ming ; Hu, Xiao-Dong ; Han, Bing ; Deng, Xiao-Hu ; Ju, Dong-Ying</creator><creatorcontrib>Chen, Ming ; Hu, Xiao-Dong ; Han, Bing ; Deng, Xiao-Hu ; Ju, Dong-Ying</creatorcontrib><description>Finite element method was employed to calculate the macroflow velocity and temperature distribution of the pool domain’s biting zone in twin-roll casting. Macroanalysis results were inducted as boundary conditions into microanalysis. Phase field method (PFM) was adopted to investigate the microstructure evolution. Based on the Kim–Kim–Suzuki model, the effect of metal flow velocity was coupled on the solute gradient item, and the real physical parameters of AZ31 were inducted into the numerical calculation. We used the marker and cell method in the discrete element solution of microstructural pattern prediction of AZ31 magnesium alloys. The different flow velocity values that predicted the columnar dendrite evolution were discussed in detail. Numerical simulation results were also compared with the experiment analysis. The microstructure obtained by PFM agrees with the actual pattern observed via optical microscopy.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-016-9627-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Characterization and Evaluation of Materials ; Computer simulation ; Condensed Matter Physics ; Dendritic structure ; Evolution ; Flow velocity ; Machines ; Magnesium base alloys ; Manufacturing ; Mathematical models ; Microstructure ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Surfaces and Interfaces ; Thin Films ; Twin roll casting</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2016-02, Vol.122 (2), p.1-10, Article 91</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-1f0befb3eff760a72bcaaad42cdbf0763363d0a0e770e737e65b9de33fab654e3</citedby><cites>FETCH-LOGICAL-c321t-1f0befb3eff760a72bcaaad42cdbf0763363d0a0e770e737e65b9de33fab654e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-016-9627-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-016-9627-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chen, Ming</creatorcontrib><creatorcontrib>Hu, Xiao-Dong</creatorcontrib><creatorcontrib>Han, Bing</creatorcontrib><creatorcontrib>Deng, Xiao-Hu</creatorcontrib><creatorcontrib>Ju, Dong-Ying</creatorcontrib><title>Study on the microstructural evolution of AZ31 magnesium alloy in a vertical twin-roll casting process</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>Finite element method was employed to calculate the macroflow velocity and temperature distribution of the pool domain’s biting zone in twin-roll casting. Macroanalysis results were inducted as boundary conditions into microanalysis. Phase field method (PFM) was adopted to investigate the microstructure evolution. Based on the Kim–Kim–Suzuki model, the effect of metal flow velocity was coupled on the solute gradient item, and the real physical parameters of AZ31 were inducted into the numerical calculation. We used the marker and cell method in the discrete element solution of microstructural pattern prediction of AZ31 magnesium alloys. The different flow velocity values that predicted the columnar dendrite evolution were discussed in detail. Numerical simulation results were also compared with the experiment analysis. The microstructure obtained by PFM agrees with the actual pattern observed via optical microscopy.</description><subject>Characterization and Evaluation of Materials</subject><subject>Computer simulation</subject><subject>Condensed Matter Physics</subject><subject>Dendritic structure</subject><subject>Evolution</subject><subject>Flow velocity</subject><subject>Machines</subject><subject>Magnesium base alloys</subject><subject>Manufacturing</subject><subject>Mathematical models</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Twin roll casting</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kDFvHCEQhZEVS77Y_gHuKNOQDLAHt6VlJXEkSy6cNG4Qyw4XTuxyAdbR_Xtz2tQZaTTFvDej9xFyx-EzB9BfCoCUPQOuWK-EZt0F2fBOCgZKwgeygb7TbCd7dUU-lnKAVp0QG-Jf6jKeaJpp_Y10Ci6nUvPi6pJtpPiW4lJD2yZP718lp5Pdz1jCMlEbYzrRMFNL3zDX4Jq-_g0zyylG6mypYd7TY04OS7khl97Ggrf_5jX59e3rz4dH9vT8_cfD_RNzUvDKuIcB_SDRe63AajE4a-3YCTcOHrSSUskRLKDWraVGtR36EaX0dlDbDuU1-bTebX__LFiqmUJxGKOdMS3F8N0OQHRbrpuUr9Jz5JLRm2MOk80nw8GcmZqVqWlMzZmp6ZpHrJ7StPMeszmkJc8t0X9M73Dle-A</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Chen, Ming</creator><creator>Hu, Xiao-Dong</creator><creator>Han, Bing</creator><creator>Deng, Xiao-Hu</creator><creator>Ju, Dong-Ying</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160201</creationdate><title>Study on the microstructural evolution of AZ31 magnesium alloy in a vertical twin-roll casting process</title><author>Chen, Ming ; Hu, Xiao-Dong ; Han, Bing ; Deng, Xiao-Hu ; Ju, Dong-Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-1f0befb3eff760a72bcaaad42cdbf0763363d0a0e770e737e65b9de33fab654e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Computer simulation</topic><topic>Condensed Matter Physics</topic><topic>Dendritic structure</topic><topic>Evolution</topic><topic>Flow velocity</topic><topic>Machines</topic><topic>Magnesium base alloys</topic><topic>Manufacturing</topic><topic>Mathematical models</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Twin roll casting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Ming</creatorcontrib><creatorcontrib>Hu, Xiao-Dong</creatorcontrib><creatorcontrib>Han, Bing</creatorcontrib><creatorcontrib>Deng, Xiao-Hu</creatorcontrib><creatorcontrib>Ju, Dong-Ying</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Ming</au><au>Hu, Xiao-Dong</au><au>Han, Bing</au><au>Deng, Xiao-Hu</au><au>Ju, Dong-Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on the microstructural evolution of AZ31 magnesium alloy in a vertical twin-roll casting process</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2016-02-01</date><risdate>2016</risdate><volume>122</volume><issue>2</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><artnum>91</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Finite element method was employed to calculate the macroflow velocity and temperature distribution of the pool domain’s biting zone in twin-roll casting. Macroanalysis results were inducted as boundary conditions into microanalysis. Phase field method (PFM) was adopted to investigate the microstructure evolution. Based on the Kim–Kim–Suzuki model, the effect of metal flow velocity was coupled on the solute gradient item, and the real physical parameters of AZ31 were inducted into the numerical calculation. We used the marker and cell method in the discrete element solution of microstructural pattern prediction of AZ31 magnesium alloys. The different flow velocity values that predicted the columnar dendrite evolution were discussed in detail. Numerical simulation results were also compared with the experiment analysis. The microstructure obtained by PFM agrees with the actual pattern observed via optical microscopy.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-016-9627-4</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2016-02, Vol.122 (2), p.1-10, Article 91
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_miscellaneous_1880024517
source SpringerLink Journals - AutoHoldings
subjects Characterization and Evaluation of Materials
Computer simulation
Condensed Matter Physics
Dendritic structure
Evolution
Flow velocity
Machines
Magnesium base alloys
Manufacturing
Mathematical models
Microstructure
Nanotechnology
Optical and Electronic Materials
Physics
Physics and Astronomy
Processes
Surfaces and Interfaces
Thin Films
Twin roll casting
title Study on the microstructural evolution of AZ31 magnesium alloy in a vertical twin-roll casting process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A12%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20the%20microstructural%20evolution%20of%20AZ31%20magnesium%20alloy%20in%20a%20vertical%20twin-roll%20casting%20process&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Chen,%20Ming&rft.date=2016-02-01&rft.volume=122&rft.issue=2&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.artnum=91&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-016-9627-4&rft_dat=%3Cproquest_cross%3E1880024517%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880024517&rft_id=info:pmid/&rfr_iscdi=true