Study on the microstructural evolution of AZ31 magnesium alloy in a vertical twin-roll casting process
Finite element method was employed to calculate the macroflow velocity and temperature distribution of the pool domain’s biting zone in twin-roll casting. Macroanalysis results were inducted as boundary conditions into microanalysis. Phase field method (PFM) was adopted to investigate the microstruc...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2016-02, Vol.122 (2), p.1-10, Article 91 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | Applied physics. A, Materials science & processing |
container_volume | 122 |
creator | Chen, Ming Hu, Xiao-Dong Han, Bing Deng, Xiao-Hu Ju, Dong-Ying |
description | Finite element method was employed to calculate the macroflow velocity and temperature distribution of the pool domain’s biting zone in twin-roll casting. Macroanalysis results were inducted as boundary conditions into microanalysis. Phase field method (PFM) was adopted to investigate the microstructure evolution. Based on the Kim–Kim–Suzuki model, the effect of metal flow velocity was coupled on the solute gradient item, and the real physical parameters of AZ31 were inducted into the numerical calculation. We used the marker and cell method in the discrete element solution of microstructural pattern prediction of AZ31 magnesium alloys. The different flow velocity values that predicted the columnar dendrite evolution were discussed in detail. Numerical simulation results were also compared with the experiment analysis. The microstructure obtained by PFM agrees with the actual pattern observed via optical microscopy. |
doi_str_mv | 10.1007/s00339-016-9627-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880024517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880024517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-1f0befb3eff760a72bcaaad42cdbf0763363d0a0e770e737e65b9de33fab654e3</originalsourceid><addsrcrecordid>eNp9kDFvHCEQhZEVS77Y_gHuKNOQDLAHt6VlJXEkSy6cNG4Qyw4XTuxyAdbR_Xtz2tQZaTTFvDej9xFyx-EzB9BfCoCUPQOuWK-EZt0F2fBOCgZKwgeygb7TbCd7dUU-lnKAVp0QG-Jf6jKeaJpp_Y10Ci6nUvPi6pJtpPiW4lJD2yZP718lp5Pdz1jCMlEbYzrRMFNL3zDX4Jq-_g0zyylG6mypYd7TY04OS7khl97Ggrf_5jX59e3rz4dH9vT8_cfD_RNzUvDKuIcB_SDRe63AajE4a-3YCTcOHrSSUskRLKDWraVGtR36EaX0dlDbDuU1-bTebX__LFiqmUJxGKOdMS3F8N0OQHRbrpuUr9Jz5JLRm2MOk80nw8GcmZqVqWlMzZmp6ZpHrJ7StPMeszmkJc8t0X9M73Dle-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880024517</pqid></control><display><type>article</type><title>Study on the microstructural evolution of AZ31 magnesium alloy in a vertical twin-roll casting process</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Ming ; Hu, Xiao-Dong ; Han, Bing ; Deng, Xiao-Hu ; Ju, Dong-Ying</creator><creatorcontrib>Chen, Ming ; Hu, Xiao-Dong ; Han, Bing ; Deng, Xiao-Hu ; Ju, Dong-Ying</creatorcontrib><description>Finite element method was employed to calculate the macroflow velocity and temperature distribution of the pool domain’s biting zone in twin-roll casting. Macroanalysis results were inducted as boundary conditions into microanalysis. Phase field method (PFM) was adopted to investigate the microstructure evolution. Based on the Kim–Kim–Suzuki model, the effect of metal flow velocity was coupled on the solute gradient item, and the real physical parameters of AZ31 were inducted into the numerical calculation. We used the marker and cell method in the discrete element solution of microstructural pattern prediction of AZ31 magnesium alloys. The different flow velocity values that predicted the columnar dendrite evolution were discussed in detail. Numerical simulation results were also compared with the experiment analysis. The microstructure obtained by PFM agrees with the actual pattern observed via optical microscopy.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-016-9627-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Characterization and Evaluation of Materials ; Computer simulation ; Condensed Matter Physics ; Dendritic structure ; Evolution ; Flow velocity ; Machines ; Magnesium base alloys ; Manufacturing ; Mathematical models ; Microstructure ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Surfaces and Interfaces ; Thin Films ; Twin roll casting</subject><ispartof>Applied physics. A, Materials science & processing, 2016-02, Vol.122 (2), p.1-10, Article 91</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-1f0befb3eff760a72bcaaad42cdbf0763363d0a0e770e737e65b9de33fab654e3</citedby><cites>FETCH-LOGICAL-c321t-1f0befb3eff760a72bcaaad42cdbf0763363d0a0e770e737e65b9de33fab654e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-016-9627-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-016-9627-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chen, Ming</creatorcontrib><creatorcontrib>Hu, Xiao-Dong</creatorcontrib><creatorcontrib>Han, Bing</creatorcontrib><creatorcontrib>Deng, Xiao-Hu</creatorcontrib><creatorcontrib>Ju, Dong-Ying</creatorcontrib><title>Study on the microstructural evolution of AZ31 magnesium alloy in a vertical twin-roll casting process</title><title>Applied physics. A, Materials science & processing</title><addtitle>Appl. Phys. A</addtitle><description>Finite element method was employed to calculate the macroflow velocity and temperature distribution of the pool domain’s biting zone in twin-roll casting. Macroanalysis results were inducted as boundary conditions into microanalysis. Phase field method (PFM) was adopted to investigate the microstructure evolution. Based on the Kim–Kim–Suzuki model, the effect of metal flow velocity was coupled on the solute gradient item, and the real physical parameters of AZ31 were inducted into the numerical calculation. We used the marker and cell method in the discrete element solution of microstructural pattern prediction of AZ31 magnesium alloys. The different flow velocity values that predicted the columnar dendrite evolution were discussed in detail. Numerical simulation results were also compared with the experiment analysis. The microstructure obtained by PFM agrees with the actual pattern observed via optical microscopy.</description><subject>Characterization and Evaluation of Materials</subject><subject>Computer simulation</subject><subject>Condensed Matter Physics</subject><subject>Dendritic structure</subject><subject>Evolution</subject><subject>Flow velocity</subject><subject>Machines</subject><subject>Magnesium base alloys</subject><subject>Manufacturing</subject><subject>Mathematical models</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Twin roll casting</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kDFvHCEQhZEVS77Y_gHuKNOQDLAHt6VlJXEkSy6cNG4Qyw4XTuxyAdbR_Xtz2tQZaTTFvDej9xFyx-EzB9BfCoCUPQOuWK-EZt0F2fBOCgZKwgeygb7TbCd7dUU-lnKAVp0QG-Jf6jKeaJpp_Y10Ci6nUvPi6pJtpPiW4lJD2yZP718lp5Pdz1jCMlEbYzrRMFNL3zDX4Jq-_g0zyylG6mypYd7TY04OS7khl97Ggrf_5jX59e3rz4dH9vT8_cfD_RNzUvDKuIcB_SDRe63AajE4a-3YCTcOHrSSUskRLKDWraVGtR36EaX0dlDbDuU1-bTebX__LFiqmUJxGKOdMS3F8N0OQHRbrpuUr9Jz5JLRm2MOk80nw8GcmZqVqWlMzZmp6ZpHrJ7StPMeszmkJc8t0X9M73Dle-A</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Chen, Ming</creator><creator>Hu, Xiao-Dong</creator><creator>Han, Bing</creator><creator>Deng, Xiao-Hu</creator><creator>Ju, Dong-Ying</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160201</creationdate><title>Study on the microstructural evolution of AZ31 magnesium alloy in a vertical twin-roll casting process</title><author>Chen, Ming ; Hu, Xiao-Dong ; Han, Bing ; Deng, Xiao-Hu ; Ju, Dong-Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-1f0befb3eff760a72bcaaad42cdbf0763363d0a0e770e737e65b9de33fab654e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Computer simulation</topic><topic>Condensed Matter Physics</topic><topic>Dendritic structure</topic><topic>Evolution</topic><topic>Flow velocity</topic><topic>Machines</topic><topic>Magnesium base alloys</topic><topic>Manufacturing</topic><topic>Mathematical models</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Twin roll casting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Ming</creatorcontrib><creatorcontrib>Hu, Xiao-Dong</creatorcontrib><creatorcontrib>Han, Bing</creatorcontrib><creatorcontrib>Deng, Xiao-Hu</creatorcontrib><creatorcontrib>Ju, Dong-Ying</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Ming</au><au>Hu, Xiao-Dong</au><au>Han, Bing</au><au>Deng, Xiao-Hu</au><au>Ju, Dong-Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on the microstructural evolution of AZ31 magnesium alloy in a vertical twin-roll casting process</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><stitle>Appl. Phys. A</stitle><date>2016-02-01</date><risdate>2016</risdate><volume>122</volume><issue>2</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><artnum>91</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Finite element method was employed to calculate the macroflow velocity and temperature distribution of the pool domain’s biting zone in twin-roll casting. Macroanalysis results were inducted as boundary conditions into microanalysis. Phase field method (PFM) was adopted to investigate the microstructure evolution. Based on the Kim–Kim–Suzuki model, the effect of metal flow velocity was coupled on the solute gradient item, and the real physical parameters of AZ31 were inducted into the numerical calculation. We used the marker and cell method in the discrete element solution of microstructural pattern prediction of AZ31 magnesium alloys. The different flow velocity values that predicted the columnar dendrite evolution were discussed in detail. Numerical simulation results were also compared with the experiment analysis. The microstructure obtained by PFM agrees with the actual pattern observed via optical microscopy.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-016-9627-4</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2016-02, Vol.122 (2), p.1-10, Article 91 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_proquest_miscellaneous_1880024517 |
source | SpringerLink Journals - AutoHoldings |
subjects | Characterization and Evaluation of Materials Computer simulation Condensed Matter Physics Dendritic structure Evolution Flow velocity Machines Magnesium base alloys Manufacturing Mathematical models Microstructure Nanotechnology Optical and Electronic Materials Physics Physics and Astronomy Processes Surfaces and Interfaces Thin Films Twin roll casting |
title | Study on the microstructural evolution of AZ31 magnesium alloy in a vertical twin-roll casting process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A12%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20the%20microstructural%20evolution%20of%20AZ31%20magnesium%20alloy%20in%20a%20vertical%20twin-roll%20casting%20process&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Chen,%20Ming&rft.date=2016-02-01&rft.volume=122&rft.issue=2&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.artnum=91&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-016-9627-4&rft_dat=%3Cproquest_cross%3E1880024517%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880024517&rft_id=info:pmid/&rfr_iscdi=true |