Sodium-based hydrides for thermal energy applications
Concentrating solar–thermal power (CSP) with thermal energy storage (TES) represents an attractive alternative to conventional fossil fuels for base-load power generation. Sodium alanate (NaAlH 4 ) is a well-known sodium-based complex metal hydride but, more recently, high-temperature sodium-based c...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2016-04, Vol.122 (4), p.1-13, Article 406 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | Applied physics. A, Materials science & processing |
container_volume | 122 |
creator | Sheppard, D. A. Humphries, T. D. Buckley, C. E. |
description | Concentrating solar–thermal power (CSP) with thermal energy storage (TES) represents an attractive alternative to conventional fossil fuels for base-load power generation. Sodium alanate (NaAlH
4
) is a well-known sodium-based complex metal hydride but, more recently, high-temperature sodium-based complex metal hydrides have been considered for TES. This review considers the current state of the art for NaH, NaMgH
3−
x
F
x
, Na-based transition metal hydrides, NaBH
4
and Na
3
AlH
6
for TES and heat pumping applications. These metal hydrides have a number of advantages over other classes of heat storage materials such as high thermal energy storage capacity, low volume, relatively low cost and a wide range of operating temperatures (100 °C to more than 650 °C). Potential safety issues associated with the use of high-temperature sodium-based hydrides are also addressed. |
doi_str_mv | 10.1007/s00339-016-9830-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880024416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880024416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-e18b4b04d4a3662fde20c3640ff3707fa00bcd0fe54541b102d1ce1a24b8be3e3</originalsourceid><addsrcrecordid>eNp9kDtPwzAQgC0EEqXwA9gyshjOjzjJiCqgSJUYgNny49ymygs7GfrvSRVmbrnl-066j5B7Bo8MoHhKAEJUFJiiVSmAiguyYlJwCkrAJVlBJQtaikpdk5uUjjCP5HxF8s_e11NLrUnos8PJx9pjykIfs_GAsTVNhh3G_Skzw9DUzox136VbchVMk_Dub6_J9-vL12ZLdx9v75vnHXUS8pEiK620IL00QikePHJwQkkIQRRQBANgnYeAucwlswy4Zw6Z4dKWFgWKNXlY7g6x_5kwjbqtk8OmMR32U9KsLAG4lEzNKFtQF_uUIgY9xLo18aQZ6HMivSTScyJ9TqTF7PDFSTPb7THqYz_Fbv7oH-kXErNo8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880024416</pqid></control><display><type>article</type><title>Sodium-based hydrides for thermal energy applications</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sheppard, D. A. ; Humphries, T. D. ; Buckley, C. E.</creator><creatorcontrib>Sheppard, D. A. ; Humphries, T. D. ; Buckley, C. E.</creatorcontrib><description>Concentrating solar–thermal power (CSP) with thermal energy storage (TES) represents an attractive alternative to conventional fossil fuels for base-load power generation. Sodium alanate (NaAlH
4
) is a well-known sodium-based complex metal hydride but, more recently, high-temperature sodium-based complex metal hydrides have been considered for TES. This review considers the current state of the art for NaH, NaMgH
3−
x
F
x
, Na-based transition metal hydrides, NaBH
4
and Na
3
AlH
6
for TES and heat pumping applications. These metal hydrides have a number of advantages over other classes of heat storage materials such as high thermal energy storage capacity, low volume, relatively low cost and a wide range of operating temperatures (100 °C to more than 650 °C). Potential safety issues associated with the use of high-temperature sodium-based hydrides are also addressed.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-016-9830-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Alternative energy sources ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Coordination compounds ; Hydrides ; Hydrogen-based energy storage ; Invited Paper ; Machines ; Manufacturing ; Materials science ; Metal hydrides ; Nanotechnology ; Operating temperature ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Sodium ; Surfaces and Interfaces ; Thermal energy ; Thin Films</subject><ispartof>Applied physics. A, Materials science & processing, 2016-04, Vol.122 (4), p.1-13, Article 406</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-e18b4b04d4a3662fde20c3640ff3707fa00bcd0fe54541b102d1ce1a24b8be3e3</citedby><cites>FETCH-LOGICAL-c405t-e18b4b04d4a3662fde20c3640ff3707fa00bcd0fe54541b102d1ce1a24b8be3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-016-9830-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-016-9830-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Sheppard, D. A.</creatorcontrib><creatorcontrib>Humphries, T. D.</creatorcontrib><creatorcontrib>Buckley, C. E.</creatorcontrib><title>Sodium-based hydrides for thermal energy applications</title><title>Applied physics. A, Materials science & processing</title><addtitle>Appl. Phys. A</addtitle><description>Concentrating solar–thermal power (CSP) with thermal energy storage (TES) represents an attractive alternative to conventional fossil fuels for base-load power generation. Sodium alanate (NaAlH
4
) is a well-known sodium-based complex metal hydride but, more recently, high-temperature sodium-based complex metal hydrides have been considered for TES. This review considers the current state of the art for NaH, NaMgH
3−
x
F
x
, Na-based transition metal hydrides, NaBH
4
and Na
3
AlH
6
for TES and heat pumping applications. These metal hydrides have a number of advantages over other classes of heat storage materials such as high thermal energy storage capacity, low volume, relatively low cost and a wide range of operating temperatures (100 °C to more than 650 °C). Potential safety issues associated with the use of high-temperature sodium-based hydrides are also addressed.</description><subject>Alternative energy sources</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Coordination compounds</subject><subject>Hydrides</subject><subject>Hydrogen-based energy storage</subject><subject>Invited Paper</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Metal hydrides</subject><subject>Nanotechnology</subject><subject>Operating temperature</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Sodium</subject><subject>Surfaces and Interfaces</subject><subject>Thermal energy</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAQgC0EEqXwA9gyshjOjzjJiCqgSJUYgNny49ymygs7GfrvSRVmbrnl-066j5B7Bo8MoHhKAEJUFJiiVSmAiguyYlJwCkrAJVlBJQtaikpdk5uUjjCP5HxF8s_e11NLrUnos8PJx9pjykIfs_GAsTVNhh3G_Skzw9DUzox136VbchVMk_Dub6_J9-vL12ZLdx9v75vnHXUS8pEiK620IL00QikePHJwQkkIQRRQBANgnYeAucwlswy4Zw6Z4dKWFgWKNXlY7g6x_5kwjbqtk8OmMR32U9KsLAG4lEzNKFtQF_uUIgY9xLo18aQZ6HMivSTScyJ9TqTF7PDFSTPb7THqYz_Fbv7oH-kXErNo8w</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Sheppard, D. A.</creator><creator>Humphries, T. D.</creator><creator>Buckley, C. E.</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160401</creationdate><title>Sodium-based hydrides for thermal energy applications</title><author>Sheppard, D. A. ; Humphries, T. D. ; Buckley, C. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-e18b4b04d4a3662fde20c3640ff3707fa00bcd0fe54541b102d1ce1a24b8be3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alternative energy sources</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Coordination compounds</topic><topic>Hydrides</topic><topic>Hydrogen-based energy storage</topic><topic>Invited Paper</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Metal hydrides</topic><topic>Nanotechnology</topic><topic>Operating temperature</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Sodium</topic><topic>Surfaces and Interfaces</topic><topic>Thermal energy</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheppard, D. A.</creatorcontrib><creatorcontrib>Humphries, T. D.</creatorcontrib><creatorcontrib>Buckley, C. E.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheppard, D. A.</au><au>Humphries, T. D.</au><au>Buckley, C. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sodium-based hydrides for thermal energy applications</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><stitle>Appl. Phys. A</stitle><date>2016-04-01</date><risdate>2016</risdate><volume>122</volume><issue>4</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><artnum>406</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Concentrating solar–thermal power (CSP) with thermal energy storage (TES) represents an attractive alternative to conventional fossil fuels for base-load power generation. Sodium alanate (NaAlH
4
) is a well-known sodium-based complex metal hydride but, more recently, high-temperature sodium-based complex metal hydrides have been considered for TES. This review considers the current state of the art for NaH, NaMgH
3−
x
F
x
, Na-based transition metal hydrides, NaBH
4
and Na
3
AlH
6
for TES and heat pumping applications. These metal hydrides have a number of advantages over other classes of heat storage materials such as high thermal energy storage capacity, low volume, relatively low cost and a wide range of operating temperatures (100 °C to more than 650 °C). Potential safety issues associated with the use of high-temperature sodium-based hydrides are also addressed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-016-9830-3</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2016-04, Vol.122 (4), p.1-13, Article 406 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_proquest_miscellaneous_1880024416 |
source | SpringerLink Journals - AutoHoldings |
subjects | Alternative energy sources Characterization and Evaluation of Materials Condensed Matter Physics Coordination compounds Hydrides Hydrogen-based energy storage Invited Paper Machines Manufacturing Materials science Metal hydrides Nanotechnology Operating temperature Optical and Electronic Materials Physics Physics and Astronomy Processes Sodium Surfaces and Interfaces Thermal energy Thin Films |
title | Sodium-based hydrides for thermal energy applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A21%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sodium-based%20hydrides%20for%20thermal%20energy%20applications&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Sheppard,%20D.%20A.&rft.date=2016-04-01&rft.volume=122&rft.issue=4&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.artnum=406&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-016-9830-3&rft_dat=%3Cproquest_cross%3E1880024416%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880024416&rft_id=info:pmid/&rfr_iscdi=true |