Sodium-based hydrides for thermal energy applications

Concentrating solar–thermal power (CSP) with thermal energy storage (TES) represents an attractive alternative to conventional fossil fuels for base-load power generation. Sodium alanate (NaAlH 4 ) is a well-known sodium-based complex metal hydride but, more recently, high-temperature sodium-based c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2016-04, Vol.122 (4), p.1-13, Article 406
Hauptverfasser: Sheppard, D. A., Humphries, T. D., Buckley, C. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 4
container_start_page 1
container_title Applied physics. A, Materials science & processing
container_volume 122
creator Sheppard, D. A.
Humphries, T. D.
Buckley, C. E.
description Concentrating solar–thermal power (CSP) with thermal energy storage (TES) represents an attractive alternative to conventional fossil fuels for base-load power generation. Sodium alanate (NaAlH 4 ) is a well-known sodium-based complex metal hydride but, more recently, high-temperature sodium-based complex metal hydrides have been considered for TES. This review considers the current state of the art for NaH, NaMgH 3− x F x , Na-based transition metal hydrides, NaBH 4 and Na 3 AlH 6 for TES and heat pumping applications. These metal hydrides have a number of advantages over other classes of heat storage materials such as high thermal energy storage capacity, low volume, relatively low cost and a wide range of operating temperatures (100 °C to more than 650 °C). Potential safety issues associated with the use of high-temperature sodium-based hydrides are also addressed.
doi_str_mv 10.1007/s00339-016-9830-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880024416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880024416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-e18b4b04d4a3662fde20c3640ff3707fa00bcd0fe54541b102d1ce1a24b8be3e3</originalsourceid><addsrcrecordid>eNp9kDtPwzAQgC0EEqXwA9gyshjOjzjJiCqgSJUYgNny49ymygs7GfrvSRVmbrnl-066j5B7Bo8MoHhKAEJUFJiiVSmAiguyYlJwCkrAJVlBJQtaikpdk5uUjjCP5HxF8s_e11NLrUnos8PJx9pjykIfs_GAsTVNhh3G_Skzw9DUzox136VbchVMk_Dub6_J9-vL12ZLdx9v75vnHXUS8pEiK620IL00QikePHJwQkkIQRRQBANgnYeAucwlswy4Zw6Z4dKWFgWKNXlY7g6x_5kwjbqtk8OmMR32U9KsLAG4lEzNKFtQF_uUIgY9xLo18aQZ6HMivSTScyJ9TqTF7PDFSTPb7THqYz_Fbv7oH-kXErNo8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880024416</pqid></control><display><type>article</type><title>Sodium-based hydrides for thermal energy applications</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sheppard, D. A. ; Humphries, T. D. ; Buckley, C. E.</creator><creatorcontrib>Sheppard, D. A. ; Humphries, T. D. ; Buckley, C. E.</creatorcontrib><description>Concentrating solar–thermal power (CSP) with thermal energy storage (TES) represents an attractive alternative to conventional fossil fuels for base-load power generation. Sodium alanate (NaAlH 4 ) is a well-known sodium-based complex metal hydride but, more recently, high-temperature sodium-based complex metal hydrides have been considered for TES. This review considers the current state of the art for NaH, NaMgH 3− x F x , Na-based transition metal hydrides, NaBH 4 and Na 3 AlH 6 for TES and heat pumping applications. These metal hydrides have a number of advantages over other classes of heat storage materials such as high thermal energy storage capacity, low volume, relatively low cost and a wide range of operating temperatures (100 °C to more than 650 °C). Potential safety issues associated with the use of high-temperature sodium-based hydrides are also addressed.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-016-9830-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Alternative energy sources ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Coordination compounds ; Hydrides ; Hydrogen-based energy storage ; Invited Paper ; Machines ; Manufacturing ; Materials science ; Metal hydrides ; Nanotechnology ; Operating temperature ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Sodium ; Surfaces and Interfaces ; Thermal energy ; Thin Films</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2016-04, Vol.122 (4), p.1-13, Article 406</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-e18b4b04d4a3662fde20c3640ff3707fa00bcd0fe54541b102d1ce1a24b8be3e3</citedby><cites>FETCH-LOGICAL-c405t-e18b4b04d4a3662fde20c3640ff3707fa00bcd0fe54541b102d1ce1a24b8be3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-016-9830-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-016-9830-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Sheppard, D. A.</creatorcontrib><creatorcontrib>Humphries, T. D.</creatorcontrib><creatorcontrib>Buckley, C. E.</creatorcontrib><title>Sodium-based hydrides for thermal energy applications</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>Concentrating solar–thermal power (CSP) with thermal energy storage (TES) represents an attractive alternative to conventional fossil fuels for base-load power generation. Sodium alanate (NaAlH 4 ) is a well-known sodium-based complex metal hydride but, more recently, high-temperature sodium-based complex metal hydrides have been considered for TES. This review considers the current state of the art for NaH, NaMgH 3− x F x , Na-based transition metal hydrides, NaBH 4 and Na 3 AlH 6 for TES and heat pumping applications. These metal hydrides have a number of advantages over other classes of heat storage materials such as high thermal energy storage capacity, low volume, relatively low cost and a wide range of operating temperatures (100 °C to more than 650 °C). Potential safety issues associated with the use of high-temperature sodium-based hydrides are also addressed.</description><subject>Alternative energy sources</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Coordination compounds</subject><subject>Hydrides</subject><subject>Hydrogen-based energy storage</subject><subject>Invited Paper</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Metal hydrides</subject><subject>Nanotechnology</subject><subject>Operating temperature</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Sodium</subject><subject>Surfaces and Interfaces</subject><subject>Thermal energy</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAQgC0EEqXwA9gyshjOjzjJiCqgSJUYgNny49ymygs7GfrvSRVmbrnl-066j5B7Bo8MoHhKAEJUFJiiVSmAiguyYlJwCkrAJVlBJQtaikpdk5uUjjCP5HxF8s_e11NLrUnos8PJx9pjykIfs_GAsTVNhh3G_Skzw9DUzox136VbchVMk_Dub6_J9-vL12ZLdx9v75vnHXUS8pEiK620IL00QikePHJwQkkIQRRQBANgnYeAucwlswy4Zw6Z4dKWFgWKNXlY7g6x_5kwjbqtk8OmMR32U9KsLAG4lEzNKFtQF_uUIgY9xLo18aQZ6HMivSTScyJ9TqTF7PDFSTPb7THqYz_Fbv7oH-kXErNo8w</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Sheppard, D. A.</creator><creator>Humphries, T. D.</creator><creator>Buckley, C. E.</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160401</creationdate><title>Sodium-based hydrides for thermal energy applications</title><author>Sheppard, D. A. ; Humphries, T. D. ; Buckley, C. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-e18b4b04d4a3662fde20c3640ff3707fa00bcd0fe54541b102d1ce1a24b8be3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alternative energy sources</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Coordination compounds</topic><topic>Hydrides</topic><topic>Hydrogen-based energy storage</topic><topic>Invited Paper</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Metal hydrides</topic><topic>Nanotechnology</topic><topic>Operating temperature</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Sodium</topic><topic>Surfaces and Interfaces</topic><topic>Thermal energy</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheppard, D. A.</creatorcontrib><creatorcontrib>Humphries, T. D.</creatorcontrib><creatorcontrib>Buckley, C. E.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheppard, D. A.</au><au>Humphries, T. D.</au><au>Buckley, C. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sodium-based hydrides for thermal energy applications</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2016-04-01</date><risdate>2016</risdate><volume>122</volume><issue>4</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><artnum>406</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Concentrating solar–thermal power (CSP) with thermal energy storage (TES) represents an attractive alternative to conventional fossil fuels for base-load power generation. Sodium alanate (NaAlH 4 ) is a well-known sodium-based complex metal hydride but, more recently, high-temperature sodium-based complex metal hydrides have been considered for TES. This review considers the current state of the art for NaH, NaMgH 3− x F x , Na-based transition metal hydrides, NaBH 4 and Na 3 AlH 6 for TES and heat pumping applications. These metal hydrides have a number of advantages over other classes of heat storage materials such as high thermal energy storage capacity, low volume, relatively low cost and a wide range of operating temperatures (100 °C to more than 650 °C). Potential safety issues associated with the use of high-temperature sodium-based hydrides are also addressed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-016-9830-3</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2016-04, Vol.122 (4), p.1-13, Article 406
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_miscellaneous_1880024416
source SpringerLink Journals - AutoHoldings
subjects Alternative energy sources
Characterization and Evaluation of Materials
Condensed Matter Physics
Coordination compounds
Hydrides
Hydrogen-based energy storage
Invited Paper
Machines
Manufacturing
Materials science
Metal hydrides
Nanotechnology
Operating temperature
Optical and Electronic Materials
Physics
Physics and Astronomy
Processes
Sodium
Surfaces and Interfaces
Thermal energy
Thin Films
title Sodium-based hydrides for thermal energy applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A21%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sodium-based%20hydrides%20for%20thermal%20energy%20applications&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Sheppard,%20D.%20A.&rft.date=2016-04-01&rft.volume=122&rft.issue=4&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.artnum=406&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-016-9830-3&rft_dat=%3Cproquest_cross%3E1880024416%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880024416&rft_id=info:pmid/&rfr_iscdi=true