Combining Color Features for Real-Time Correlation Tracking
Correlation filter-based approaches achieve competitive results in visual tracking, but the traditional correlation tracking methods failed in mining the color information of the videos. To address this issue, we propose a novel tracker combined with color features in a correlation filter framework,...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Information and Systems 2017/01/01, Vol.E100.D(1), pp.225-228 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 228 |
---|---|
container_issue | 1 |
container_start_page | 225 |
container_title | IEICE Transactions on Information and Systems |
container_volume | E100.D |
creator | XU, Yulong MIAO, Zhuang WANG, Jiabao LI, Yang LI, Hang ZHANG, Yafei XU, Weiguang PAN, Zhisong |
description | Correlation filter-based approaches achieve competitive results in visual tracking, but the traditional correlation tracking methods failed in mining the color information of the videos. To address this issue, we propose a novel tracker combined with color features in a correlation filter framework, which extracts not only gray but also color information as the feature maps to compute the maximum response location via multi-channel correlation filters. In particular, we modify the label function of the conventional classifier to improve positioning accuracy and employ a discriminative correlation filter to handle scale variations. Experiments are performed on 35 challenging benchmark color sequences. And the results clearly show that our method outperforms state-of-the-art tracking approaches while operating in real-time. |
doi_str_mv | 10.1587/transinf.2016EDL8053 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880023613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880023613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c600t-196976d9e623d87d7aa7a9b39b8e00584c1bd58533e715df27531d0ef89c34b93</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFb_gYeAFy-pM9lssosnSVsVCkKp52WTTGpqPupucvDfm1Jbi6edZZ5nmHkZu0WYoJDxQ2dN48qmmASA0Wy6kCD4GRthHAofeYTnbAQKI18KHlyyK-c2ACgDFCP2mLR1WjZls_aStmqtNyfT9ZacVwyfJZnKX5U1DU1rqTJd2TbeyprsczCu2UVhKkc3v--Yvc9nq-TFX7w9vyZPCz-LADofVaTiKFcUBTyXcR4bExuVcpVKAhAyzDDNxbAbpxhFXgSx4JgDFVJlPEwVH7P7_dytbb96cp2uS5dRVZmG2t5plBIgGO7kA3r3D920vW2G7XTAgUsIldxR4Z7KbOucpUJvbVkb-60R9C5RfUhUnyQ6aMu9tnGdWdNRMrYrs4r-pBkC6KnGQ3Ey5AhnH8ZqavgPhWCGuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2303804983</pqid></control><display><type>article</type><title>Combining Color Features for Real-Time Correlation Tracking</title><source>J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>XU, Yulong ; MIAO, Zhuang ; WANG, Jiabao ; LI, Yang ; LI, Hang ; ZHANG, Yafei ; XU, Weiguang ; PAN, Zhisong</creator><creatorcontrib>XU, Yulong ; MIAO, Zhuang ; WANG, Jiabao ; LI, Yang ; LI, Hang ; ZHANG, Yafei ; XU, Weiguang ; PAN, Zhisong</creatorcontrib><description>Correlation filter-based approaches achieve competitive results in visual tracking, but the traditional correlation tracking methods failed in mining the color information of the videos. To address this issue, we propose a novel tracker combined with color features in a correlation filter framework, which extracts not only gray but also color information as the feature maps to compute the maximum response location via multi-channel correlation filters. In particular, we modify the label function of the conventional classifier to improve positioning accuracy and employ a discriminative correlation filter to handle scale variations. Experiments are performed on 35 challenging benchmark color sequences. And the results clearly show that our method outperforms state-of-the-art tracking approaches while operating in real-time.</description><identifier>ISSN: 0916-8532</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1587/transinf.2016EDL8053</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>Color ; color feature ; Correlation ; correlation filter ; Data mining ; Feature extraction ; Feature maps ; Optical tracking ; Position (location) ; Real time ; real-time visual tracking ; Tracking ; Tracking (position)</subject><ispartof>IEICE Transactions on Information and Systems, 2017/01/01, Vol.E100.D(1), pp.225-228</ispartof><rights>2017 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c600t-196976d9e623d87d7aa7a9b39b8e00584c1bd58533e715df27531d0ef89c34b93</citedby><cites>FETCH-LOGICAL-c600t-196976d9e623d87d7aa7a9b39b8e00584c1bd58533e715df27531d0ef89c34b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,4010,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>XU, Yulong</creatorcontrib><creatorcontrib>MIAO, Zhuang</creatorcontrib><creatorcontrib>WANG, Jiabao</creatorcontrib><creatorcontrib>LI, Yang</creatorcontrib><creatorcontrib>LI, Hang</creatorcontrib><creatorcontrib>ZHANG, Yafei</creatorcontrib><creatorcontrib>XU, Weiguang</creatorcontrib><creatorcontrib>PAN, Zhisong</creatorcontrib><title>Combining Color Features for Real-Time Correlation Tracking</title><title>IEICE Transactions on Information and Systems</title><addtitle>IEICE Trans. Inf. & Syst.</addtitle><description>Correlation filter-based approaches achieve competitive results in visual tracking, but the traditional correlation tracking methods failed in mining the color information of the videos. To address this issue, we propose a novel tracker combined with color features in a correlation filter framework, which extracts not only gray but also color information as the feature maps to compute the maximum response location via multi-channel correlation filters. In particular, we modify the label function of the conventional classifier to improve positioning accuracy and employ a discriminative correlation filter to handle scale variations. Experiments are performed on 35 challenging benchmark color sequences. And the results clearly show that our method outperforms state-of-the-art tracking approaches while operating in real-time.</description><subject>Color</subject><subject>color feature</subject><subject>Correlation</subject><subject>correlation filter</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Optical tracking</subject><subject>Position (location)</subject><subject>Real time</subject><subject>real-time visual tracking</subject><subject>Tracking</subject><subject>Tracking (position)</subject><issn>0916-8532</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRsFb_gYeAFy-pM9lssosnSVsVCkKp52WTTGpqPupucvDfm1Jbi6edZZ5nmHkZu0WYoJDxQ2dN48qmmASA0Wy6kCD4GRthHAofeYTnbAQKI18KHlyyK-c2ACgDFCP2mLR1WjZls_aStmqtNyfT9ZacVwyfJZnKX5U1DU1rqTJd2TbeyprsczCu2UVhKkc3v--Yvc9nq-TFX7w9vyZPCz-LADofVaTiKFcUBTyXcR4bExuVcpVKAhAyzDDNxbAbpxhFXgSx4JgDFVJlPEwVH7P7_dytbb96cp2uS5dRVZmG2t5plBIgGO7kA3r3D920vW2G7XTAgUsIldxR4Z7KbOucpUJvbVkb-60R9C5RfUhUnyQ6aMu9tnGdWdNRMrYrs4r-pBkC6KnGQ3Ey5AhnH8ZqavgPhWCGuw</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>XU, Yulong</creator><creator>MIAO, Zhuang</creator><creator>WANG, Jiabao</creator><creator>LI, Yang</creator><creator>LI, Hang</creator><creator>ZHANG, Yafei</creator><creator>XU, Weiguang</creator><creator>PAN, Zhisong</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170101</creationdate><title>Combining Color Features for Real-Time Correlation Tracking</title><author>XU, Yulong ; MIAO, Zhuang ; WANG, Jiabao ; LI, Yang ; LI, Hang ; ZHANG, Yafei ; XU, Weiguang ; PAN, Zhisong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c600t-196976d9e623d87d7aa7a9b39b8e00584c1bd58533e715df27531d0ef89c34b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Color</topic><topic>color feature</topic><topic>Correlation</topic><topic>correlation filter</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Optical tracking</topic><topic>Position (location)</topic><topic>Real time</topic><topic>real-time visual tracking</topic><topic>Tracking</topic><topic>Tracking (position)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>XU, Yulong</creatorcontrib><creatorcontrib>MIAO, Zhuang</creatorcontrib><creatorcontrib>WANG, Jiabao</creatorcontrib><creatorcontrib>LI, Yang</creatorcontrib><creatorcontrib>LI, Hang</creatorcontrib><creatorcontrib>ZHANG, Yafei</creatorcontrib><creatorcontrib>XU, Weiguang</creatorcontrib><creatorcontrib>PAN, Zhisong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Information and Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>XU, Yulong</au><au>MIAO, Zhuang</au><au>WANG, Jiabao</au><au>LI, Yang</au><au>LI, Hang</au><au>ZHANG, Yafei</au><au>XU, Weiguang</au><au>PAN, Zhisong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining Color Features for Real-Time Correlation Tracking</atitle><jtitle>IEICE Transactions on Information and Systems</jtitle><addtitle>IEICE Trans. Inf. & Syst.</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>E100.D</volume><issue>1</issue><spage>225</spage><epage>228</epage><pages>225-228</pages><issn>0916-8532</issn><eissn>1745-1361</eissn><abstract>Correlation filter-based approaches achieve competitive results in visual tracking, but the traditional correlation tracking methods failed in mining the color information of the videos. To address this issue, we propose a novel tracker combined with color features in a correlation filter framework, which extracts not only gray but also color information as the feature maps to compute the maximum response location via multi-channel correlation filters. In particular, we modify the label function of the conventional classifier to improve positioning accuracy and employ a discriminative correlation filter to handle scale variations. Experiments are performed on 35 challenging benchmark color sequences. And the results clearly show that our method outperforms state-of-the-art tracking approaches while operating in real-time.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transinf.2016EDL8053</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-8532 |
ispartof | IEICE Transactions on Information and Systems, 2017/01/01, Vol.E100.D(1), pp.225-228 |
issn | 0916-8532 1745-1361 |
language | eng |
recordid | cdi_proquest_miscellaneous_1880023613 |
source | J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Color color feature Correlation correlation filter Data mining Feature extraction Feature maps Optical tracking Position (location) Real time real-time visual tracking Tracking Tracking (position) |
title | Combining Color Features for Real-Time Correlation Tracking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A33%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20Color%20Features%20for%20Real-Time%20Correlation%20Tracking&rft.jtitle=IEICE%20Transactions%20on%20Information%20and%20Systems&rft.au=XU,%20Yulong&rft.date=2017-01-01&rft.volume=E100.D&rft.issue=1&rft.spage=225&rft.epage=228&rft.pages=225-228&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1587/transinf.2016EDL8053&rft_dat=%3Cproquest_cross%3E1880023613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2303804983&rft_id=info:pmid/&rfr_iscdi=true |