The Computation Reduction in Object Detection via Composite Structure of Modified Integral Images

Object detection is the first step in the object recognition. According to the detection results, its following works are affected. However, object detection has a heavy resource requirement in terms of, computing power and memory. If an image is enlarged, the computational load required for object...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2017/01/01, Vol.E100.D(1), pp.229-233
Hauptverfasser: LEE, Daeha, KIM, Jaehong, KIM, Ho-Hee, KIM, Soon-Ja
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 233
container_issue 1
container_start_page 229
container_title IEICE Transactions on Information and Systems
container_volume E100.D
creator LEE, Daeha
KIM, Jaehong
KIM, Ho-Hee
KIM, Soon-Ja
description Object detection is the first step in the object recognition. According to the detection results, its following works are affected. However, object detection has a heavy resource requirement in terms of, computing power and memory. If an image is enlarged, the computational load required for object detection is also increased. An-integral-image-based method guarantees fast object detection. Once an integral image is generated, the speed of the object detection procedure remains fixed, regardless of the pattern region size. However, this becomes an even greater issue if the image is enlarged. In this paper, we propose the use of directional integral image based object detection. A directional integral image gives direction to an integral image, which can then be calculated from various directions. Furthermore, many unnecessary calculations, which typically occur when a partial integral image is used for object detection, can be avoided. Therefore, the amount of computation is reduced, compared with methods using integral images. In experiments comparing methods, the proposed method required 40% fewer computations.
doi_str_mv 10.1587/transinf.2016EDL8158
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880023546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880023546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c549t-bc02bbff79f1a750397930d7ea7295365c6d37cf7b17ce1ad8331b00b7b113af3</originalsourceid><addsrcrecordid>eNpdkEFvEzEQhS1EJULLP-BgiQuXLTPreO09oiSFSEGVSjlbXu-4dbRZB9uLxL_v0tBScZqnp--NZh5j7xEuUWr1qSQ75jD6yxqw2ax3enZfsQWqpaxQNPiaLaDFptJS1G_Y25z3AKhrlAtmb--Jr-LhOBVbQhz5DfWTe1Rh5Nfdnlzhayp08n4F-0jHHArx7yXN7JSIR8-_xT74QD3fjoXukh349mDvKF-wM2-HTO_-znP242pzu_pa7a6_bFefd5WTy7ZUnYO667xXrUerJIhWtQJ6RVbVrRSNdE0vlPOqQ-UIba-FwA6gmw0U1otz9vG095jiz4lyMYeQHQ2DHSlO2aDWALWQy2ZGP_yH7uOUxvk6UwsQGqQW7UwtT5RLMedE3hxTONj02yCYP72bp97Ni97n2M0pts9l_v85ZFMJbqB_oQ0CmLXBJ_FiyTPs7m0yNIoH7D2VuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2303805839</pqid></control><display><type>article</type><title>The Computation Reduction in Object Detection via Composite Structure of Modified Integral Images</title><source>J-STAGE Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>LEE, Daeha ; KIM, Jaehong ; KIM, Ho-Hee ; KIM, Soon-Ja</creator><creatorcontrib>LEE, Daeha ; KIM, Jaehong ; KIM, Ho-Hee ; KIM, Soon-Ja</creatorcontrib><description>Object detection is the first step in the object recognition. According to the detection results, its following works are affected. However, object detection has a heavy resource requirement in terms of, computing power and memory. If an image is enlarged, the computational load required for object detection is also increased. An-integral-image-based method guarantees fast object detection. Once an integral image is generated, the speed of the object detection procedure remains fixed, regardless of the pattern region size. However, this becomes an even greater issue if the image is enlarged. In this paper, we propose the use of directional integral image based object detection. A directional integral image gives direction to an integral image, which can then be calculated from various directions. Furthermore, many unnecessary calculations, which typically occur when a partial integral image is used for object detection, can be avoided. Therefore, the amount of computation is reduced, compared with methods using integral images. In experiments comparing methods, the proposed method required 40% fewer computations.</description><identifier>ISSN: 0916-8532</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1587/transinf.2016EDL8158</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>Cameras ; Composite structures ; composite-type directional integral image ; Computation ; directional integral image ; Expansion ; Image detection ; integral image ; Integrals ; Mathematical analysis ; Meteorological satellites ; Object recognition ; Vision systems</subject><ispartof>IEICE Transactions on Information and Systems, 2017/01/01, Vol.E100.D(1), pp.229-233</ispartof><rights>2017 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c549t-bc02bbff79f1a750397930d7ea7295365c6d37cf7b17ce1ad8331b00b7b113af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,1879,4012,27906,27907,27908</link.rule.ids></links><search><creatorcontrib>LEE, Daeha</creatorcontrib><creatorcontrib>KIM, Jaehong</creatorcontrib><creatorcontrib>KIM, Ho-Hee</creatorcontrib><creatorcontrib>KIM, Soon-Ja</creatorcontrib><title>The Computation Reduction in Object Detection via Composite Structure of Modified Integral Images</title><title>IEICE Transactions on Information and Systems</title><addtitle>IEICE Trans. Inf. &amp; Syst.</addtitle><description>Object detection is the first step in the object recognition. According to the detection results, its following works are affected. However, object detection has a heavy resource requirement in terms of, computing power and memory. If an image is enlarged, the computational load required for object detection is also increased. An-integral-image-based method guarantees fast object detection. Once an integral image is generated, the speed of the object detection procedure remains fixed, regardless of the pattern region size. However, this becomes an even greater issue if the image is enlarged. In this paper, we propose the use of directional integral image based object detection. A directional integral image gives direction to an integral image, which can then be calculated from various directions. Furthermore, many unnecessary calculations, which typically occur when a partial integral image is used for object detection, can be avoided. Therefore, the amount of computation is reduced, compared with methods using integral images. In experiments comparing methods, the proposed method required 40% fewer computations.</description><subject>Cameras</subject><subject>Composite structures</subject><subject>composite-type directional integral image</subject><subject>Computation</subject><subject>directional integral image</subject><subject>Expansion</subject><subject>Image detection</subject><subject>integral image</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Meteorological satellites</subject><subject>Object recognition</subject><subject>Vision systems</subject><issn>0916-8532</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkEFvEzEQhS1EJULLP-BgiQuXLTPreO09oiSFSEGVSjlbXu-4dbRZB9uLxL_v0tBScZqnp--NZh5j7xEuUWr1qSQ75jD6yxqw2ax3enZfsQWqpaxQNPiaLaDFptJS1G_Y25z3AKhrlAtmb--Jr-LhOBVbQhz5DfWTe1Rh5Nfdnlzhayp08n4F-0jHHArx7yXN7JSIR8-_xT74QD3fjoXukh349mDvKF-wM2-HTO_-znP242pzu_pa7a6_bFefd5WTy7ZUnYO667xXrUerJIhWtQJ6RVbVrRSNdE0vlPOqQ-UIba-FwA6gmw0U1otz9vG095jiz4lyMYeQHQ2DHSlO2aDWALWQy2ZGP_yH7uOUxvk6UwsQGqQW7UwtT5RLMedE3hxTONj02yCYP72bp97Ni97n2M0pts9l_v85ZFMJbqB_oQ0CmLXBJ_FiyTPs7m0yNIoH7D2VuQ</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>LEE, Daeha</creator><creator>KIM, Jaehong</creator><creator>KIM, Ho-Hee</creator><creator>KIM, Soon-Ja</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170101</creationdate><title>The Computation Reduction in Object Detection via Composite Structure of Modified Integral Images</title><author>LEE, Daeha ; KIM, Jaehong ; KIM, Ho-Hee ; KIM, Soon-Ja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c549t-bc02bbff79f1a750397930d7ea7295365c6d37cf7b17ce1ad8331b00b7b113af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cameras</topic><topic>Composite structures</topic><topic>composite-type directional integral image</topic><topic>Computation</topic><topic>directional integral image</topic><topic>Expansion</topic><topic>Image detection</topic><topic>integral image</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Meteorological satellites</topic><topic>Object recognition</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LEE, Daeha</creatorcontrib><creatorcontrib>KIM, Jaehong</creatorcontrib><creatorcontrib>KIM, Ho-Hee</creatorcontrib><creatorcontrib>KIM, Soon-Ja</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Information and Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LEE, Daeha</au><au>KIM, Jaehong</au><au>KIM, Ho-Hee</au><au>KIM, Soon-Ja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Computation Reduction in Object Detection via Composite Structure of Modified Integral Images</atitle><jtitle>IEICE Transactions on Information and Systems</jtitle><addtitle>IEICE Trans. Inf. &amp; Syst.</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>E100.D</volume><issue>1</issue><spage>229</spage><epage>233</epage><pages>229-233</pages><issn>0916-8532</issn><eissn>1745-1361</eissn><abstract>Object detection is the first step in the object recognition. According to the detection results, its following works are affected. However, object detection has a heavy resource requirement in terms of, computing power and memory. If an image is enlarged, the computational load required for object detection is also increased. An-integral-image-based method guarantees fast object detection. Once an integral image is generated, the speed of the object detection procedure remains fixed, regardless of the pattern region size. However, this becomes an even greater issue if the image is enlarged. In this paper, we propose the use of directional integral image based object detection. A directional integral image gives direction to an integral image, which can then be calculated from various directions. Furthermore, many unnecessary calculations, which typically occur when a partial integral image is used for object detection, can be avoided. Therefore, the amount of computation is reduced, compared with methods using integral images. In experiments comparing methods, the proposed method required 40% fewer computations.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transinf.2016EDL8158</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0916-8532
ispartof IEICE Transactions on Information and Systems, 2017/01/01, Vol.E100.D(1), pp.229-233
issn 0916-8532
1745-1361
language eng
recordid cdi_proquest_miscellaneous_1880023546
source J-STAGE Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Cameras
Composite structures
composite-type directional integral image
Computation
directional integral image
Expansion
Image detection
integral image
Integrals
Mathematical analysis
Meteorological satellites
Object recognition
Vision systems
title The Computation Reduction in Object Detection via Composite Structure of Modified Integral Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A18%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Computation%20Reduction%20in%20Object%20Detection%20via%20Composite%20Structure%20of%20Modified%20Integral%20Images&rft.jtitle=IEICE%20Transactions%20on%20Information%20and%20Systems&rft.au=LEE,%20Daeha&rft.date=2017-01-01&rft.volume=E100.D&rft.issue=1&rft.spage=229&rft.epage=233&rft.pages=229-233&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1587/transinf.2016EDL8158&rft_dat=%3Cproquest_cross%3E1880023546%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2303805839&rft_id=info:pmid/&rfr_iscdi=true