The Computation Reduction in Object Detection via Composite Structure of Modified Integral Images
Object detection is the first step in the object recognition. According to the detection results, its following works are affected. However, object detection has a heavy resource requirement in terms of, computing power and memory. If an image is enlarged, the computational load required for object...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Information and Systems 2017/01/01, Vol.E100.D(1), pp.229-233 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 233 |
---|---|
container_issue | 1 |
container_start_page | 229 |
container_title | IEICE Transactions on Information and Systems |
container_volume | E100.D |
creator | LEE, Daeha KIM, Jaehong KIM, Ho-Hee KIM, Soon-Ja |
description | Object detection is the first step in the object recognition. According to the detection results, its following works are affected. However, object detection has a heavy resource requirement in terms of, computing power and memory. If an image is enlarged, the computational load required for object detection is also increased. An-integral-image-based method guarantees fast object detection. Once an integral image is generated, the speed of the object detection procedure remains fixed, regardless of the pattern region size. However, this becomes an even greater issue if the image is enlarged. In this paper, we propose the use of directional integral image based object detection. A directional integral image gives direction to an integral image, which can then be calculated from various directions. Furthermore, many unnecessary calculations, which typically occur when a partial integral image is used for object detection, can be avoided. Therefore, the amount of computation is reduced, compared with methods using integral images. In experiments comparing methods, the proposed method required 40% fewer computations. |
doi_str_mv | 10.1587/transinf.2016EDL8158 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880023546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880023546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c549t-bc02bbff79f1a750397930d7ea7295365c6d37cf7b17ce1ad8331b00b7b113af3</originalsourceid><addsrcrecordid>eNpdkEFvEzEQhS1EJULLP-BgiQuXLTPreO09oiSFSEGVSjlbXu-4dbRZB9uLxL_v0tBScZqnp--NZh5j7xEuUWr1qSQ75jD6yxqw2ax3enZfsQWqpaxQNPiaLaDFptJS1G_Y25z3AKhrlAtmb--Jr-LhOBVbQhz5DfWTe1Rh5Nfdnlzhayp08n4F-0jHHArx7yXN7JSIR8-_xT74QD3fjoXukh349mDvKF-wM2-HTO_-znP242pzu_pa7a6_bFefd5WTy7ZUnYO667xXrUerJIhWtQJ6RVbVrRSNdE0vlPOqQ-UIba-FwA6gmw0U1otz9vG095jiz4lyMYeQHQ2DHSlO2aDWALWQy2ZGP_yH7uOUxvk6UwsQGqQW7UwtT5RLMedE3hxTONj02yCYP72bp97Ni97n2M0pts9l_v85ZFMJbqB_oQ0CmLXBJ_FiyTPs7m0yNIoH7D2VuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2303805839</pqid></control><display><type>article</type><title>The Computation Reduction in Object Detection via Composite Structure of Modified Integral Images</title><source>J-STAGE Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>LEE, Daeha ; KIM, Jaehong ; KIM, Ho-Hee ; KIM, Soon-Ja</creator><creatorcontrib>LEE, Daeha ; KIM, Jaehong ; KIM, Ho-Hee ; KIM, Soon-Ja</creatorcontrib><description>Object detection is the first step in the object recognition. According to the detection results, its following works are affected. However, object detection has a heavy resource requirement in terms of, computing power and memory. If an image is enlarged, the computational load required for object detection is also increased. An-integral-image-based method guarantees fast object detection. Once an integral image is generated, the speed of the object detection procedure remains fixed, regardless of the pattern region size. However, this becomes an even greater issue if the image is enlarged. In this paper, we propose the use of directional integral image based object detection. A directional integral image gives direction to an integral image, which can then be calculated from various directions. Furthermore, many unnecessary calculations, which typically occur when a partial integral image is used for object detection, can be avoided. Therefore, the amount of computation is reduced, compared with methods using integral images. In experiments comparing methods, the proposed method required 40% fewer computations.</description><identifier>ISSN: 0916-8532</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1587/transinf.2016EDL8158</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>Cameras ; Composite structures ; composite-type directional integral image ; Computation ; directional integral image ; Expansion ; Image detection ; integral image ; Integrals ; Mathematical analysis ; Meteorological satellites ; Object recognition ; Vision systems</subject><ispartof>IEICE Transactions on Information and Systems, 2017/01/01, Vol.E100.D(1), pp.229-233</ispartof><rights>2017 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c549t-bc02bbff79f1a750397930d7ea7295365c6d37cf7b17ce1ad8331b00b7b113af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,1879,4012,27906,27907,27908</link.rule.ids></links><search><creatorcontrib>LEE, Daeha</creatorcontrib><creatorcontrib>KIM, Jaehong</creatorcontrib><creatorcontrib>KIM, Ho-Hee</creatorcontrib><creatorcontrib>KIM, Soon-Ja</creatorcontrib><title>The Computation Reduction in Object Detection via Composite Structure of Modified Integral Images</title><title>IEICE Transactions on Information and Systems</title><addtitle>IEICE Trans. Inf. & Syst.</addtitle><description>Object detection is the first step in the object recognition. According to the detection results, its following works are affected. However, object detection has a heavy resource requirement in terms of, computing power and memory. If an image is enlarged, the computational load required for object detection is also increased. An-integral-image-based method guarantees fast object detection. Once an integral image is generated, the speed of the object detection procedure remains fixed, regardless of the pattern region size. However, this becomes an even greater issue if the image is enlarged. In this paper, we propose the use of directional integral image based object detection. A directional integral image gives direction to an integral image, which can then be calculated from various directions. Furthermore, many unnecessary calculations, which typically occur when a partial integral image is used for object detection, can be avoided. Therefore, the amount of computation is reduced, compared with methods using integral images. In experiments comparing methods, the proposed method required 40% fewer computations.</description><subject>Cameras</subject><subject>Composite structures</subject><subject>composite-type directional integral image</subject><subject>Computation</subject><subject>directional integral image</subject><subject>Expansion</subject><subject>Image detection</subject><subject>integral image</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Meteorological satellites</subject><subject>Object recognition</subject><subject>Vision systems</subject><issn>0916-8532</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkEFvEzEQhS1EJULLP-BgiQuXLTPreO09oiSFSEGVSjlbXu-4dbRZB9uLxL_v0tBScZqnp--NZh5j7xEuUWr1qSQ75jD6yxqw2ax3enZfsQWqpaxQNPiaLaDFptJS1G_Y25z3AKhrlAtmb--Jr-LhOBVbQhz5DfWTe1Rh5Nfdnlzhayp08n4F-0jHHArx7yXN7JSIR8-_xT74QD3fjoXukh349mDvKF-wM2-HTO_-znP242pzu_pa7a6_bFefd5WTy7ZUnYO667xXrUerJIhWtQJ6RVbVrRSNdE0vlPOqQ-UIba-FwA6gmw0U1otz9vG095jiz4lyMYeQHQ2DHSlO2aDWALWQy2ZGP_yH7uOUxvk6UwsQGqQW7UwtT5RLMedE3hxTONj02yCYP72bp97Ni97n2M0pts9l_v85ZFMJbqB_oQ0CmLXBJ_FiyTPs7m0yNIoH7D2VuQ</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>LEE, Daeha</creator><creator>KIM, Jaehong</creator><creator>KIM, Ho-Hee</creator><creator>KIM, Soon-Ja</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170101</creationdate><title>The Computation Reduction in Object Detection via Composite Structure of Modified Integral Images</title><author>LEE, Daeha ; KIM, Jaehong ; KIM, Ho-Hee ; KIM, Soon-Ja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c549t-bc02bbff79f1a750397930d7ea7295365c6d37cf7b17ce1ad8331b00b7b113af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cameras</topic><topic>Composite structures</topic><topic>composite-type directional integral image</topic><topic>Computation</topic><topic>directional integral image</topic><topic>Expansion</topic><topic>Image detection</topic><topic>integral image</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Meteorological satellites</topic><topic>Object recognition</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LEE, Daeha</creatorcontrib><creatorcontrib>KIM, Jaehong</creatorcontrib><creatorcontrib>KIM, Ho-Hee</creatorcontrib><creatorcontrib>KIM, Soon-Ja</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Information and Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LEE, Daeha</au><au>KIM, Jaehong</au><au>KIM, Ho-Hee</au><au>KIM, Soon-Ja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Computation Reduction in Object Detection via Composite Structure of Modified Integral Images</atitle><jtitle>IEICE Transactions on Information and Systems</jtitle><addtitle>IEICE Trans. Inf. & Syst.</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>E100.D</volume><issue>1</issue><spage>229</spage><epage>233</epage><pages>229-233</pages><issn>0916-8532</issn><eissn>1745-1361</eissn><abstract>Object detection is the first step in the object recognition. According to the detection results, its following works are affected. However, object detection has a heavy resource requirement in terms of, computing power and memory. If an image is enlarged, the computational load required for object detection is also increased. An-integral-image-based method guarantees fast object detection. Once an integral image is generated, the speed of the object detection procedure remains fixed, regardless of the pattern region size. However, this becomes an even greater issue if the image is enlarged. In this paper, we propose the use of directional integral image based object detection. A directional integral image gives direction to an integral image, which can then be calculated from various directions. Furthermore, many unnecessary calculations, which typically occur when a partial integral image is used for object detection, can be avoided. Therefore, the amount of computation is reduced, compared with methods using integral images. In experiments comparing methods, the proposed method required 40% fewer computations.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transinf.2016EDL8158</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-8532 |
ispartof | IEICE Transactions on Information and Systems, 2017/01/01, Vol.E100.D(1), pp.229-233 |
issn | 0916-8532 1745-1361 |
language | eng |
recordid | cdi_proquest_miscellaneous_1880023546 |
source | J-STAGE Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Cameras Composite structures composite-type directional integral image Computation directional integral image Expansion Image detection integral image Integrals Mathematical analysis Meteorological satellites Object recognition Vision systems |
title | The Computation Reduction in Object Detection via Composite Structure of Modified Integral Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A18%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Computation%20Reduction%20in%20Object%20Detection%20via%20Composite%20Structure%20of%20Modified%20Integral%20Images&rft.jtitle=IEICE%20Transactions%20on%20Information%20and%20Systems&rft.au=LEE,%20Daeha&rft.date=2017-01-01&rft.volume=E100.D&rft.issue=1&rft.spage=229&rft.epage=233&rft.pages=229-233&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1587/transinf.2016EDL8158&rft_dat=%3Cproquest_cross%3E1880023546%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2303805839&rft_id=info:pmid/&rfr_iscdi=true |