Geodetic mass balance of surge‐type Black Rapids Glacier, Alaska, 1980–2001–2010, including role of rockslide deposition and earthquake displacement

We determine the geodetic mass balance of surge‐type Black Rapids Glacier, Alaska, for the time periods 1980–2001 and 2001–2010 by combining modern interferometric synthetic aperture radar (InSAR)‐derived digital elevation models (DEMs), DEMs derived from archival aerial imagery, laser altimetry dat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Earth surface 2016-12, Vol.121 (12), p.2358-2380
Hauptverfasser: Kienholz, C., Hock, R., Truffer, M., Arendt, A. A., Arko, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2380
container_issue 12
container_start_page 2358
container_title Journal of geophysical research. Earth surface
container_volume 121
creator Kienholz, C.
Hock, R.
Truffer, M.
Arendt, A. A.
Arko, S.
description We determine the geodetic mass balance of surge‐type Black Rapids Glacier, Alaska, for the time periods 1980–2001 and 2001–2010 by combining modern interferometric synthetic aperture radar (InSAR)‐derived digital elevation models (DEMs), DEMs derived from archival aerial imagery, laser altimetry data, and in situ surface elevation measurements. Our analysis accounts for both the large rockslides and terrain displacements caused by the 2002 M7.9 earthquake on the Denali fault, which runs through Black Rapids Glacier. To estimate uncertainties, we apply Monte Carlo simulations. For the earthquake‐triggered rockslides we find a volume of 56.62 ± 2.86 × 106 m3, equivalent to an average debris thickness of 4.44 ± 0.24 m across the 11.7 km2 deposit area on the glacier. Terrain displacement due to the earthquake corresponds to an apparent glacier volume change of −53.1 × 106 m3, which would cause an apparent specific mass balance of −0.19 meter water equivalent (mwe) if not taken into account. The geodetic mass balance of Black Rapids Glacier is −0.48 ± 0.07 mwe a−1 for the entire 30 year period, but more negative for the period 2001–2010 (−0.64 ± 0.11 mwe a−1) than the period 1980–2001 (−0.42 ± 0.11 mwe a−1), in agreement with trends indicated by in situ mass balance measurements. Elevation data indicate no net thickening of the surge reservoir between 1980 and 2010, in contrast to what is expected during the quiescent phase. A surge of Black Rapids Glacier in the near future is thus considered unlikely. Key Points Annual mass balances of Black Rapids Glacier are more negative over the period 2001–2010 than 1980–2001 A surge of Black Rapids Glacier in the near future is unlikely given the absence of thickening in the surge reservoir Apparent glacier volume changes due to the rockslide deposits and earthquake displacements can be substantial
doi_str_mv 10.1002/2016JF003883
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880022997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1909302920</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3773-5ce7dfbe4222466568904b7ac68923cab31ab168b543b91a4d267d6de9b200a33</originalsourceid><addsrcrecordid>eNqNkc9rFDEUxwdRsNTe_AMCXjzs6ksyk0mOtbirpSAUPQ9vkrc13exkmsxQ9tY_QfDmn9e_xNgVEQ_Fd3m_Pnx5P6rqJYc3HEC8FcDV-QpAai2fVEeCK7M0wPnTPzHI59VJztdQTJcSF0fVjzVFR5O3bIc5sx4DDpZY3LA8pyu6v_s27Udi7wLaLbvE0bvM1iXxlBbsNGDe4oJxo-H-7rsA4A-Ow4L5wYbZ-eGKpRgeBFO02xy8I-ZojNlPPg4MB8cI0_T1ZsZt6fg8FnXa0TC9qJ5tMGQ6-e2Pqy-r95_PPiwvPq0_np1eLFG2rVw2llq36akWQtRKNUobqPsWbQmEtNhLjj1Xum9q2RuOtROqdcqR6cvAKOVx9fqgO6Z4M1Oeup3PlkK5BMU5d1zrcl9hTPsfqNISGlnzgr76B72OcxrKIh03YCQII-BRSjdayAZaVajFgbIp5pxo043J7zDtOw7dr-d3fz-_4PKA3_pA-0fZ7nx9uRKghJQ_AVf7r3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1858235076</pqid></control><display><type>article</type><title>Geodetic mass balance of surge‐type Black Rapids Glacier, Alaska, 1980–2001–2010, including role of rockslide deposition and earthquake displacement</title><source>Wiley Online Library - AutoHoldings Journals</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library (Open Access Collection)</source><creator>Kienholz, C. ; Hock, R. ; Truffer, M. ; Arendt, A. A. ; Arko, S.</creator><creatorcontrib>Kienholz, C. ; Hock, R. ; Truffer, M. ; Arendt, A. A. ; Arko, S.</creatorcontrib><description>We determine the geodetic mass balance of surge‐type Black Rapids Glacier, Alaska, for the time periods 1980–2001 and 2001–2010 by combining modern interferometric synthetic aperture radar (InSAR)‐derived digital elevation models (DEMs), DEMs derived from archival aerial imagery, laser altimetry data, and in situ surface elevation measurements. Our analysis accounts for both the large rockslides and terrain displacements caused by the 2002 M7.9 earthquake on the Denali fault, which runs through Black Rapids Glacier. To estimate uncertainties, we apply Monte Carlo simulations. For the earthquake‐triggered rockslides we find a volume of 56.62 ± 2.86 × 106 m3, equivalent to an average debris thickness of 4.44 ± 0.24 m across the 11.7 km2 deposit area on the glacier. Terrain displacement due to the earthquake corresponds to an apparent glacier volume change of −53.1 × 106 m3, which would cause an apparent specific mass balance of −0.19 meter water equivalent (mwe) if not taken into account. The geodetic mass balance of Black Rapids Glacier is −0.48 ± 0.07 mwe a−1 for the entire 30 year period, but more negative for the period 2001–2010 (−0.64 ± 0.11 mwe a−1) than the period 1980–2001 (−0.42 ± 0.11 mwe a−1), in agreement with trends indicated by in situ mass balance measurements. Elevation data indicate no net thickening of the surge reservoir between 1980 and 2010, in contrast to what is expected during the quiescent phase. A surge of Black Rapids Glacier in the near future is thus considered unlikely. Key Points Annual mass balances of Black Rapids Glacier are more negative over the period 2001–2010 than 1980–2001 A surge of Black Rapids Glacier in the near future is unlikely given the absence of thickening in the surge reservoir Apparent glacier volume changes due to the rockslide deposits and earthquake displacements can be substantial</description><identifier>ISSN: 2169-9003</identifier><identifier>EISSN: 2169-9011</identifier><identifier>DOI: 10.1002/2016JF003883</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Altimeters ; Altimetry ; Area ; Computer simulation ; Debris ; Deposition ; Deposits ; Digital Elevation Models ; Digital imaging ; Displacement ; Earthquakes ; Elevation ; Equivalence ; Geodetics ; Glacial drift ; glacier mass balance ; Glaciers ; Imagery ; Interferometric synthetic aperture radar ; Interferometry ; Lasers ; Mass ; Mass balance of glaciers ; Monte Carlo ; Monte Carlo simulation ; Plate tectonics ; Radar ; Reservoirs ; Rockslides ; SAR (radar) ; Seismic activity ; Seismology ; Statistical methods ; Surges ; Synthetic aperture radar ; Synthetic aperture radar interferometry ; Terrain ; Thickening ; Water</subject><ispartof>Journal of geophysical research. Earth surface, 2016-12, Vol.121 (12), p.2358-2380</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3773-5ce7dfbe4222466568904b7ac68923cab31ab168b543b91a4d267d6de9b200a33</citedby><cites>FETCH-LOGICAL-a3773-5ce7dfbe4222466568904b7ac68923cab31ab168b543b91a4d267d6de9b200a33</cites><orcidid>0000-0003-0429-6905 ; 0000-0001-7962-4446 ; 0000-0001-8336-9441 ; 0000-0001-8251-7043</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016JF003883$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016JF003883$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids></links><search><creatorcontrib>Kienholz, C.</creatorcontrib><creatorcontrib>Hock, R.</creatorcontrib><creatorcontrib>Truffer, M.</creatorcontrib><creatorcontrib>Arendt, A. A.</creatorcontrib><creatorcontrib>Arko, S.</creatorcontrib><title>Geodetic mass balance of surge‐type Black Rapids Glacier, Alaska, 1980–2001–2010, including role of rockslide deposition and earthquake displacement</title><title>Journal of geophysical research. Earth surface</title><description>We determine the geodetic mass balance of surge‐type Black Rapids Glacier, Alaska, for the time periods 1980–2001 and 2001–2010 by combining modern interferometric synthetic aperture radar (InSAR)‐derived digital elevation models (DEMs), DEMs derived from archival aerial imagery, laser altimetry data, and in situ surface elevation measurements. Our analysis accounts for both the large rockslides and terrain displacements caused by the 2002 M7.9 earthquake on the Denali fault, which runs through Black Rapids Glacier. To estimate uncertainties, we apply Monte Carlo simulations. For the earthquake‐triggered rockslides we find a volume of 56.62 ± 2.86 × 106 m3, equivalent to an average debris thickness of 4.44 ± 0.24 m across the 11.7 km2 deposit area on the glacier. Terrain displacement due to the earthquake corresponds to an apparent glacier volume change of −53.1 × 106 m3, which would cause an apparent specific mass balance of −0.19 meter water equivalent (mwe) if not taken into account. The geodetic mass balance of Black Rapids Glacier is −0.48 ± 0.07 mwe a−1 for the entire 30 year period, but more negative for the period 2001–2010 (−0.64 ± 0.11 mwe a−1) than the period 1980–2001 (−0.42 ± 0.11 mwe a−1), in agreement with trends indicated by in situ mass balance measurements. Elevation data indicate no net thickening of the surge reservoir between 1980 and 2010, in contrast to what is expected during the quiescent phase. A surge of Black Rapids Glacier in the near future is thus considered unlikely. Key Points Annual mass balances of Black Rapids Glacier are more negative over the period 2001–2010 than 1980–2001 A surge of Black Rapids Glacier in the near future is unlikely given the absence of thickening in the surge reservoir Apparent glacier volume changes due to the rockslide deposits and earthquake displacements can be substantial</description><subject>Altimeters</subject><subject>Altimetry</subject><subject>Area</subject><subject>Computer simulation</subject><subject>Debris</subject><subject>Deposition</subject><subject>Deposits</subject><subject>Digital Elevation Models</subject><subject>Digital imaging</subject><subject>Displacement</subject><subject>Earthquakes</subject><subject>Elevation</subject><subject>Equivalence</subject><subject>Geodetics</subject><subject>Glacial drift</subject><subject>glacier mass balance</subject><subject>Glaciers</subject><subject>Imagery</subject><subject>Interferometric synthetic aperture radar</subject><subject>Interferometry</subject><subject>Lasers</subject><subject>Mass</subject><subject>Mass balance of glaciers</subject><subject>Monte Carlo</subject><subject>Monte Carlo simulation</subject><subject>Plate tectonics</subject><subject>Radar</subject><subject>Reservoirs</subject><subject>Rockslides</subject><subject>SAR (radar)</subject><subject>Seismic activity</subject><subject>Seismology</subject><subject>Statistical methods</subject><subject>Surges</subject><subject>Synthetic aperture radar</subject><subject>Synthetic aperture radar interferometry</subject><subject>Terrain</subject><subject>Thickening</subject><subject>Water</subject><issn>2169-9003</issn><issn>2169-9011</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkc9rFDEUxwdRsNTe_AMCXjzs6ksyk0mOtbirpSAUPQ9vkrc13exkmsxQ9tY_QfDmn9e_xNgVEQ_Fd3m_Pnx5P6rqJYc3HEC8FcDV-QpAai2fVEeCK7M0wPnTPzHI59VJztdQTJcSF0fVjzVFR5O3bIc5sx4DDpZY3LA8pyu6v_s27Udi7wLaLbvE0bvM1iXxlBbsNGDe4oJxo-H-7rsA4A-Ow4L5wYbZ-eGKpRgeBFO02xy8I-ZojNlPPg4MB8cI0_T1ZsZt6fg8FnXa0TC9qJ5tMGQ6-e2Pqy-r95_PPiwvPq0_np1eLFG2rVw2llq36akWQtRKNUobqPsWbQmEtNhLjj1Xum9q2RuOtROqdcqR6cvAKOVx9fqgO6Z4M1Oeup3PlkK5BMU5d1zrcl9hTPsfqNISGlnzgr76B72OcxrKIh03YCQII-BRSjdayAZaVajFgbIp5pxo043J7zDtOw7dr-d3fz-_4PKA3_pA-0fZ7nx9uRKghJQ_AVf7r3g</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Kienholz, C.</creator><creator>Hock, R.</creator><creator>Truffer, M.</creator><creator>Arendt, A. A.</creator><creator>Arko, S.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0429-6905</orcidid><orcidid>https://orcid.org/0000-0001-7962-4446</orcidid><orcidid>https://orcid.org/0000-0001-8336-9441</orcidid><orcidid>https://orcid.org/0000-0001-8251-7043</orcidid></search><sort><creationdate>201612</creationdate><title>Geodetic mass balance of surge‐type Black Rapids Glacier, Alaska, 1980–2001–2010, including role of rockslide deposition and earthquake displacement</title><author>Kienholz, C. ; Hock, R. ; Truffer, M. ; Arendt, A. A. ; Arko, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3773-5ce7dfbe4222466568904b7ac68923cab31ab168b543b91a4d267d6de9b200a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Altimeters</topic><topic>Altimetry</topic><topic>Area</topic><topic>Computer simulation</topic><topic>Debris</topic><topic>Deposition</topic><topic>Deposits</topic><topic>Digital Elevation Models</topic><topic>Digital imaging</topic><topic>Displacement</topic><topic>Earthquakes</topic><topic>Elevation</topic><topic>Equivalence</topic><topic>Geodetics</topic><topic>Glacial drift</topic><topic>glacier mass balance</topic><topic>Glaciers</topic><topic>Imagery</topic><topic>Interferometric synthetic aperture radar</topic><topic>Interferometry</topic><topic>Lasers</topic><topic>Mass</topic><topic>Mass balance of glaciers</topic><topic>Monte Carlo</topic><topic>Monte Carlo simulation</topic><topic>Plate tectonics</topic><topic>Radar</topic><topic>Reservoirs</topic><topic>Rockslides</topic><topic>SAR (radar)</topic><topic>Seismic activity</topic><topic>Seismology</topic><topic>Statistical methods</topic><topic>Surges</topic><topic>Synthetic aperture radar</topic><topic>Synthetic aperture radar interferometry</topic><topic>Terrain</topic><topic>Thickening</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kienholz, C.</creatorcontrib><creatorcontrib>Hock, R.</creatorcontrib><creatorcontrib>Truffer, M.</creatorcontrib><creatorcontrib>Arendt, A. A.</creatorcontrib><creatorcontrib>Arko, S.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of geophysical research. Earth surface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kienholz, C.</au><au>Hock, R.</au><au>Truffer, M.</au><au>Arendt, A. A.</au><au>Arko, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geodetic mass balance of surge‐type Black Rapids Glacier, Alaska, 1980–2001–2010, including role of rockslide deposition and earthquake displacement</atitle><jtitle>Journal of geophysical research. Earth surface</jtitle><date>2016-12</date><risdate>2016</risdate><volume>121</volume><issue>12</issue><spage>2358</spage><epage>2380</epage><pages>2358-2380</pages><issn>2169-9003</issn><eissn>2169-9011</eissn><abstract>We determine the geodetic mass balance of surge‐type Black Rapids Glacier, Alaska, for the time periods 1980–2001 and 2001–2010 by combining modern interferometric synthetic aperture radar (InSAR)‐derived digital elevation models (DEMs), DEMs derived from archival aerial imagery, laser altimetry data, and in situ surface elevation measurements. Our analysis accounts for both the large rockslides and terrain displacements caused by the 2002 M7.9 earthquake on the Denali fault, which runs through Black Rapids Glacier. To estimate uncertainties, we apply Monte Carlo simulations. For the earthquake‐triggered rockslides we find a volume of 56.62 ± 2.86 × 106 m3, equivalent to an average debris thickness of 4.44 ± 0.24 m across the 11.7 km2 deposit area on the glacier. Terrain displacement due to the earthquake corresponds to an apparent glacier volume change of −53.1 × 106 m3, which would cause an apparent specific mass balance of −0.19 meter water equivalent (mwe) if not taken into account. The geodetic mass balance of Black Rapids Glacier is −0.48 ± 0.07 mwe a−1 for the entire 30 year period, but more negative for the period 2001–2010 (−0.64 ± 0.11 mwe a−1) than the period 1980–2001 (−0.42 ± 0.11 mwe a−1), in agreement with trends indicated by in situ mass balance measurements. Elevation data indicate no net thickening of the surge reservoir between 1980 and 2010, in contrast to what is expected during the quiescent phase. A surge of Black Rapids Glacier in the near future is thus considered unlikely. Key Points Annual mass balances of Black Rapids Glacier are more negative over the period 2001–2010 than 1980–2001 A surge of Black Rapids Glacier in the near future is unlikely given the absence of thickening in the surge reservoir Apparent glacier volume changes due to the rockslide deposits and earthquake displacements can be substantial</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2016JF003883</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-0429-6905</orcidid><orcidid>https://orcid.org/0000-0001-7962-4446</orcidid><orcidid>https://orcid.org/0000-0001-8336-9441</orcidid><orcidid>https://orcid.org/0000-0001-8251-7043</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9003
ispartof Journal of geophysical research. Earth surface, 2016-12, Vol.121 (12), p.2358-2380
issn 2169-9003
2169-9011
language eng
recordid cdi_proquest_miscellaneous_1880022997
source Wiley Online Library - AutoHoldings Journals; Wiley-Blackwell AGU Digital Library; Wiley Online Library (Open Access Collection)
subjects Altimeters
Altimetry
Area
Computer simulation
Debris
Deposition
Deposits
Digital Elevation Models
Digital imaging
Displacement
Earthquakes
Elevation
Equivalence
Geodetics
Glacial drift
glacier mass balance
Glaciers
Imagery
Interferometric synthetic aperture radar
Interferometry
Lasers
Mass
Mass balance of glaciers
Monte Carlo
Monte Carlo simulation
Plate tectonics
Radar
Reservoirs
Rockslides
SAR (radar)
Seismic activity
Seismology
Statistical methods
Surges
Synthetic aperture radar
Synthetic aperture radar interferometry
Terrain
Thickening
Water
title Geodetic mass balance of surge‐type Black Rapids Glacier, Alaska, 1980–2001–2010, including role of rockslide deposition and earthquake displacement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A07%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geodetic%20mass%20balance%20of%20surge%E2%80%90type%20Black%20Rapids%20Glacier,%20Alaska,%201980%E2%80%932001%E2%80%932010,%20including%20role%20of%20rockslide%20deposition%20and%20earthquake%20displacement&rft.jtitle=Journal%20of%20geophysical%20research.%20Earth%20surface&rft.au=Kienholz,%20C.&rft.date=2016-12&rft.volume=121&rft.issue=12&rft.spage=2358&rft.epage=2380&rft.pages=2358-2380&rft.issn=2169-9003&rft.eissn=2169-9011&rft_id=info:doi/10.1002/2016JF003883&rft_dat=%3Cproquest_cross%3E1909302920%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1858235076&rft_id=info:pmid/&rfr_iscdi=true