Dynamic probabilistic design approach of high-pressure turbine blade-tip radial running clearance

To develop the high performance and high reliability of turbomachinery just like an aeroengine, distributed collaborative time-varying least squares support vector machine (LSSVM) (called as DC-T-LSSVM) method was proposed for the dynamic probabilistic analysis of high-pressure turbine blade-tip rad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2016-10, Vol.86 (1), p.205-223
Hauptverfasser: Fei, Cheng-Wei, Choy, Yat-Sze, Hu, Dian-Yin, Bai, Guang-Chen, Tang, Wen-Zhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 223
container_issue 1
container_start_page 205
container_title Nonlinear dynamics
container_volume 86
creator Fei, Cheng-Wei
Choy, Yat-Sze
Hu, Dian-Yin
Bai, Guang-Chen
Tang, Wen-Zhong
description To develop the high performance and high reliability of turbomachinery just like an aeroengine, distributed collaborative time-varying least squares support vector machine (LSSVM) (called as DC-T-LSSVM) method was proposed for the dynamic probabilistic analysis of high-pressure turbine blade-tip radial running clearance (BTRRC). For structural transient probabilistic analysis, time-varying LSSVM (called as T-LSSVM) method was developed by improving LSSVM, and the mathematical model of the T-LSSVM was established. The mathematical model of DC-T-LSSVM was built based on T-LSSVM and distributed collaborative strategy. Through the dynamic probabilistic analysis of BTRRC with respect to the nonlinearity of material property and the dynamics of thermal load and centrifugal force load, the probabilistic distributions and features of different influential parameters on BTRRC, such as rotational speed, the temperature of gas, expansion coefficients, the surface coefficients of heat transfer and the deformations of disk, blade and casing, are obtained. The deformations of turbine disk, blade and casing, the rotational speed and the temperature of gas significantly influence BTRRC. Turbine disk and blade perform the positive effects on the BTRRC, while turbine casing has the negative impact. The comparison of four methods (Monte Carlo method, T-LSSVM, DCERSM and DC-T-LSSVM) reveals that the DC-T-LSSVM reshapes the possibility of the probabilistic analysis of complex turbomachinery and improves the computational efficiency while preserving the accuracy. The efforts offer a useful insight for rapidly designing and optimizing the BTRRC dynamically from a probabilistic perspective.
doi_str_mv 10.1007/s11071-016-2883-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880020848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880874864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-859d693028cbca084b10f28f8f6e5f63dc7dc9d6e3158d89f09345a6df1f74c63</originalsourceid><addsrcrecordid>eNp9kU9LxDAQxYMouK5-AG8BL16ik7RN06Osf2HBi8LeQpom3SzdtCbtwW9vynoQQU_DDL_3eMND6JLCDQUobyOlUFIClBMmREboEVrQoswI49XmGC2gYjmBCjan6CzGHQBkDMQCqftPr_ZO4yH0tapd5-KYtsZE13qshnRWeot7i7eu3ZIhmBinYPA4hdp5g-tONYaMbsBBNU51OEzeO99i3RkVlNfmHJ1Y1UVz8T2X6P3x4W31TNavTy-ruzXROYORiKJqeJUBE7rWCkReU7BMWGG5KSzPGl02OiEmo4VoRGWhyvJC8cZSW-aaZ0t0ffBNkT8mE0e5d1GbrlPe9FOUVAiA9HMuEnr1C931U_ApnWSMA-O0BPofNXuJMhc8TxQ9UDr0MQZj5RDcXoVPSUHO1chDNTJVI-dq5OzMDpqYWN-a8MP5T9EXt1SQ6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2260261701</pqid></control><display><type>article</type><title>Dynamic probabilistic design approach of high-pressure turbine blade-tip radial running clearance</title><source>Springer Nature - Complete Springer Journals</source><creator>Fei, Cheng-Wei ; Choy, Yat-Sze ; Hu, Dian-Yin ; Bai, Guang-Chen ; Tang, Wen-Zhong</creator><creatorcontrib>Fei, Cheng-Wei ; Choy, Yat-Sze ; Hu, Dian-Yin ; Bai, Guang-Chen ; Tang, Wen-Zhong</creatorcontrib><description>To develop the high performance and high reliability of turbomachinery just like an aeroengine, distributed collaborative time-varying least squares support vector machine (LSSVM) (called as DC-T-LSSVM) method was proposed for the dynamic probabilistic analysis of high-pressure turbine blade-tip radial running clearance (BTRRC). For structural transient probabilistic analysis, time-varying LSSVM (called as T-LSSVM) method was developed by improving LSSVM, and the mathematical model of the T-LSSVM was established. The mathematical model of DC-T-LSSVM was built based on T-LSSVM and distributed collaborative strategy. Through the dynamic probabilistic analysis of BTRRC with respect to the nonlinearity of material property and the dynamics of thermal load and centrifugal force load, the probabilistic distributions and features of different influential parameters on BTRRC, such as rotational speed, the temperature of gas, expansion coefficients, the surface coefficients of heat transfer and the deformations of disk, blade and casing, are obtained. The deformations of turbine disk, blade and casing, the rotational speed and the temperature of gas significantly influence BTRRC. Turbine disk and blade perform the positive effects on the BTRRC, while turbine casing has the negative impact. The comparison of four methods (Monte Carlo method, T-LSSVM, DCERSM and DC-T-LSSVM) reveals that the DC-T-LSSVM reshapes the possibility of the probabilistic analysis of complex turbomachinery and improves the computational efficiency while preserving the accuracy. The efforts offer a useful insight for rapidly designing and optimizing the BTRRC dynamically from a probabilistic perspective.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-016-2883-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Blade tips ; Blades ; Centrifugal force ; Classical Mechanics ; Clearances ; Collaboration ; Computer simulation ; Control ; Deformation ; Dynamic tests ; Dynamical Systems ; Engineering ; High pressure ; Loads (forces) ; Material properties ; Mathematical models ; Mechanical Engineering ; Monte Carlo simulation ; Nonlinear dynamics ; Original Paper ; Probabilistic analysis ; Probabilistic methods ; Probability theory ; Support vector machines ; Thermal analysis ; Thermal expansion ; Turbine blades ; Turbines ; Turbomachinery ; Vibration</subject><ispartof>Nonlinear dynamics, 2016-10, Vol.86 (1), p.205-223</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><rights>Nonlinear Dynamics is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-859d693028cbca084b10f28f8f6e5f63dc7dc9d6e3158d89f09345a6df1f74c63</citedby><cites>FETCH-LOGICAL-c420t-859d693028cbca084b10f28f8f6e5f63dc7dc9d6e3158d89f09345a6df1f74c63</cites><orcidid>0000-0001-5333-1055</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-016-2883-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-016-2883-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Fei, Cheng-Wei</creatorcontrib><creatorcontrib>Choy, Yat-Sze</creatorcontrib><creatorcontrib>Hu, Dian-Yin</creatorcontrib><creatorcontrib>Bai, Guang-Chen</creatorcontrib><creatorcontrib>Tang, Wen-Zhong</creatorcontrib><title>Dynamic probabilistic design approach of high-pressure turbine blade-tip radial running clearance</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>To develop the high performance and high reliability of turbomachinery just like an aeroengine, distributed collaborative time-varying least squares support vector machine (LSSVM) (called as DC-T-LSSVM) method was proposed for the dynamic probabilistic analysis of high-pressure turbine blade-tip radial running clearance (BTRRC). For structural transient probabilistic analysis, time-varying LSSVM (called as T-LSSVM) method was developed by improving LSSVM, and the mathematical model of the T-LSSVM was established. The mathematical model of DC-T-LSSVM was built based on T-LSSVM and distributed collaborative strategy. Through the dynamic probabilistic analysis of BTRRC with respect to the nonlinearity of material property and the dynamics of thermal load and centrifugal force load, the probabilistic distributions and features of different influential parameters on BTRRC, such as rotational speed, the temperature of gas, expansion coefficients, the surface coefficients of heat transfer and the deformations of disk, blade and casing, are obtained. The deformations of turbine disk, blade and casing, the rotational speed and the temperature of gas significantly influence BTRRC. Turbine disk and blade perform the positive effects on the BTRRC, while turbine casing has the negative impact. The comparison of four methods (Monte Carlo method, T-LSSVM, DCERSM and DC-T-LSSVM) reveals that the DC-T-LSSVM reshapes the possibility of the probabilistic analysis of complex turbomachinery and improves the computational efficiency while preserving the accuracy. The efforts offer a useful insight for rapidly designing and optimizing the BTRRC dynamically from a probabilistic perspective.</description><subject>Automotive Engineering</subject><subject>Blade tips</subject><subject>Blades</subject><subject>Centrifugal force</subject><subject>Classical Mechanics</subject><subject>Clearances</subject><subject>Collaboration</subject><subject>Computer simulation</subject><subject>Control</subject><subject>Deformation</subject><subject>Dynamic tests</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>High pressure</subject><subject>Loads (forces)</subject><subject>Material properties</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Monte Carlo simulation</subject><subject>Nonlinear dynamics</subject><subject>Original Paper</subject><subject>Probabilistic analysis</subject><subject>Probabilistic methods</subject><subject>Probability theory</subject><subject>Support vector machines</subject><subject>Thermal analysis</subject><subject>Thermal expansion</subject><subject>Turbine blades</subject><subject>Turbines</subject><subject>Turbomachinery</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU9LxDAQxYMouK5-AG8BL16ik7RN06Osf2HBi8LeQpom3SzdtCbtwW9vynoQQU_DDL_3eMND6JLCDQUobyOlUFIClBMmREboEVrQoswI49XmGC2gYjmBCjan6CzGHQBkDMQCqftPr_ZO4yH0tapd5-KYtsZE13qshnRWeot7i7eu3ZIhmBinYPA4hdp5g-tONYaMbsBBNU51OEzeO99i3RkVlNfmHJ1Y1UVz8T2X6P3x4W31TNavTy-ruzXROYORiKJqeJUBE7rWCkReU7BMWGG5KSzPGl02OiEmo4VoRGWhyvJC8cZSW-aaZ0t0ffBNkT8mE0e5d1GbrlPe9FOUVAiA9HMuEnr1C931U_ApnWSMA-O0BPofNXuJMhc8TxQ9UDr0MQZj5RDcXoVPSUHO1chDNTJVI-dq5OzMDpqYWN-a8MP5T9EXt1SQ6w</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Fei, Cheng-Wei</creator><creator>Choy, Yat-Sze</creator><creator>Hu, Dian-Yin</creator><creator>Bai, Guang-Chen</creator><creator>Tang, Wen-Zhong</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5333-1055</orcidid></search><sort><creationdate>20161001</creationdate><title>Dynamic probabilistic design approach of high-pressure turbine blade-tip radial running clearance</title><author>Fei, Cheng-Wei ; Choy, Yat-Sze ; Hu, Dian-Yin ; Bai, Guang-Chen ; Tang, Wen-Zhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-859d693028cbca084b10f28f8f6e5f63dc7dc9d6e3158d89f09345a6df1f74c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Automotive Engineering</topic><topic>Blade tips</topic><topic>Blades</topic><topic>Centrifugal force</topic><topic>Classical Mechanics</topic><topic>Clearances</topic><topic>Collaboration</topic><topic>Computer simulation</topic><topic>Control</topic><topic>Deformation</topic><topic>Dynamic tests</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>High pressure</topic><topic>Loads (forces)</topic><topic>Material properties</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Monte Carlo simulation</topic><topic>Nonlinear dynamics</topic><topic>Original Paper</topic><topic>Probabilistic analysis</topic><topic>Probabilistic methods</topic><topic>Probability theory</topic><topic>Support vector machines</topic><topic>Thermal analysis</topic><topic>Thermal expansion</topic><topic>Turbine blades</topic><topic>Turbines</topic><topic>Turbomachinery</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fei, Cheng-Wei</creatorcontrib><creatorcontrib>Choy, Yat-Sze</creatorcontrib><creatorcontrib>Hu, Dian-Yin</creatorcontrib><creatorcontrib>Bai, Guang-Chen</creatorcontrib><creatorcontrib>Tang, Wen-Zhong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fei, Cheng-Wei</au><au>Choy, Yat-Sze</au><au>Hu, Dian-Yin</au><au>Bai, Guang-Chen</au><au>Tang, Wen-Zhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic probabilistic design approach of high-pressure turbine blade-tip radial running clearance</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>86</volume><issue>1</issue><spage>205</spage><epage>223</epage><pages>205-223</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>To develop the high performance and high reliability of turbomachinery just like an aeroengine, distributed collaborative time-varying least squares support vector machine (LSSVM) (called as DC-T-LSSVM) method was proposed for the dynamic probabilistic analysis of high-pressure turbine blade-tip radial running clearance (BTRRC). For structural transient probabilistic analysis, time-varying LSSVM (called as T-LSSVM) method was developed by improving LSSVM, and the mathematical model of the T-LSSVM was established. The mathematical model of DC-T-LSSVM was built based on T-LSSVM and distributed collaborative strategy. Through the dynamic probabilistic analysis of BTRRC with respect to the nonlinearity of material property and the dynamics of thermal load and centrifugal force load, the probabilistic distributions and features of different influential parameters on BTRRC, such as rotational speed, the temperature of gas, expansion coefficients, the surface coefficients of heat transfer and the deformations of disk, blade and casing, are obtained. The deformations of turbine disk, blade and casing, the rotational speed and the temperature of gas significantly influence BTRRC. Turbine disk and blade perform the positive effects on the BTRRC, while turbine casing has the negative impact. The comparison of four methods (Monte Carlo method, T-LSSVM, DCERSM and DC-T-LSSVM) reveals that the DC-T-LSSVM reshapes the possibility of the probabilistic analysis of complex turbomachinery and improves the computational efficiency while preserving the accuracy. The efforts offer a useful insight for rapidly designing and optimizing the BTRRC dynamically from a probabilistic perspective.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-016-2883-1</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-5333-1055</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2016-10, Vol.86 (1), p.205-223
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_miscellaneous_1880020848
source Springer Nature - Complete Springer Journals
subjects Automotive Engineering
Blade tips
Blades
Centrifugal force
Classical Mechanics
Clearances
Collaboration
Computer simulation
Control
Deformation
Dynamic tests
Dynamical Systems
Engineering
High pressure
Loads (forces)
Material properties
Mathematical models
Mechanical Engineering
Monte Carlo simulation
Nonlinear dynamics
Original Paper
Probabilistic analysis
Probabilistic methods
Probability theory
Support vector machines
Thermal analysis
Thermal expansion
Turbine blades
Turbines
Turbomachinery
Vibration
title Dynamic probabilistic design approach of high-pressure turbine blade-tip radial running clearance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A47%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20probabilistic%20design%20approach%20of%20high-pressure%20turbine%20blade-tip%20radial%20running%20clearance&rft.jtitle=Nonlinear%20dynamics&rft.au=Fei,%20Cheng-Wei&rft.date=2016-10-01&rft.volume=86&rft.issue=1&rft.spage=205&rft.epage=223&rft.pages=205-223&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-016-2883-1&rft_dat=%3Cproquest_cross%3E1880874864%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2260261701&rft_id=info:pmid/&rfr_iscdi=true