Mechanisms of bacterial persistence during stress and antibiotic exposure
Bacterial persister cells avoid antibiotic-induced death by entering a physiologically dormant state and are considered a major cause of antibiotic treatment failure and relapsing infections. Such dormant cells form stochastically, but also in response to environmental cues, by various pathways that...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2016-12, Vol.354 (6318), p.1390-1390 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1390 |
---|---|
container_issue | 6318 |
container_start_page | 1390 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 354 |
creator | Harms, Alexander Maisonneuve, Etienne Gerdes, Kenn |
description | Bacterial persister cells avoid antibiotic-induced death by entering a physiologically dormant state and are considered a major cause of antibiotic treatment failure and relapsing infections. Such dormant cells form stochastically, but also in response to environmental cues, by various pathways that are usually controlled by the second messenger (p)ppGpp. For example, toxin-antitoxin modules have been shown to play a major role in persister formation in many model systems. More generally, the diversity of molecular mechanisms driving persister formation is increasingly recognized as the cause of physiological heterogeneity that underlies collective multistress and multidrug tolerance of persister subpopulations. In this Review, we summarize the current state of the field and highlight recent findings, with a focus on the molecular basis of persister formation and heterogeneity. |
doi_str_mv | 10.1126/science.aaf4268 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880020108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44711451</jstor_id><sourcerecordid>44711451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-92668e434f2b05a910fffad21f8be1f1930c9918a2b5d841adcff81018cc95c53</originalsourceid><addsrcrecordid>eNqN0TtPwzAQB3ALgaA8ZiZQJBaWwp0fiT2iipcEYoE5chwbXLVJ8SUSfHuMWhiYGCwP9_PJd3_GjhEuEHl5SS76zvkLa4Pkpd5iEwSjpoaD2GYTAFFONVRqj-0TzQFyzYhdtscrowGVmbD7R-_ebBdpSUUfisa6wadoF8XKJ4o0fHcv2jHF7rWgIXmiwnZtPkNsYj9EV_iPVU9j8odsJ9gF-aPNfcBebq6fZ3fTh6fb-9nVw9Qprob8tbLUXgoZeAPKGoQQgm05Bt14DGgEOGNQW96oVku0rQtBI6B2ziinxAE7X_ddpf599DTUy0jOLxa28_1INWoNwAFB_4OWWuQ1CPgHVXm_BiqR6dkfOu_H1OWZs5JGQiV1mdXlWrnUEyUf6lWKS5s-a4T6O7t6k129yS6_ON30HZulb3_9T1gZnKzBnIY-_dalrBClQvEF5vufwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1849407486</pqid></control><display><type>article</type><title>Mechanisms of bacterial persistence during stress and antibiotic exposure</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>American Association for the Advancement of Science</source><creator>Harms, Alexander ; Maisonneuve, Etienne ; Gerdes, Kenn</creator><creatorcontrib>Harms, Alexander ; Maisonneuve, Etienne ; Gerdes, Kenn</creatorcontrib><description>Bacterial persister cells avoid antibiotic-induced death by entering a physiologically dormant state and are considered a major cause of antibiotic treatment failure and relapsing infections. Such dormant cells form stochastically, but also in response to environmental cues, by various pathways that are usually controlled by the second messenger (p)ppGpp. For example, toxin-antitoxin modules have been shown to play a major role in persister formation in many model systems. More generally, the diversity of molecular mechanisms driving persister formation is increasingly recognized as the cause of physiological heterogeneity that underlies collective multistress and multidrug tolerance of persister subpopulations. In this Review, we summarize the current state of the field and highlight recent findings, with a focus on the molecular basis of persister formation and heterogeneity.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aaf4268</identifier><identifier>PMID: 27980159</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Adaptation, Physiological - genetics ; Adaptation, Physiological - physiology ; Anti-Bacterial Agents - pharmacology ; Anti-Bacterial Agents - therapeutic use ; Antibiotics ; Bacteria ; Bacteria - drug effects ; Bacteria - metabolism ; Bacterial Infections - drug therapy ; Bacterial Infections - microbiology ; Bacterial Proteins - metabolism ; Bacterial Toxins - antagonists & inhibitors ; Bacterial Toxins - metabolism ; Biofilms ; Cellular biology ; Cues ; DNA Damage ; Drug resistance ; Drug Resistance, Multiple, Bacterial ; Elementary Secondary Education ; Formations ; Guanosine Pentaphosphate - metabolism ; Heterogeneity ; Pathways ; Persistence ; Probability theory ; Proton-Motive Force ; Research Methodology ; REVIEW SUMMARY ; Sigma Factor - metabolism ; Signal Transduction ; SOS Response (Genetics) ; Stochastic Processes ; Stress response ; Stress, Physiological - genetics ; Stress, Physiological - physiology ; Tolerances</subject><ispartof>Science (American Association for the Advancement of Science), 2016-12, Vol.354 (6318), p.1390-1390</ispartof><rights>Copyright © 2016 American Association for the Advancement of Science</rights><rights>Copyright © 2016, American Association for the Advancement of Science.</rights><rights>Copyright © 2016, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-92668e434f2b05a910fffad21f8be1f1930c9918a2b5d841adcff81018cc95c53</citedby><cites>FETCH-LOGICAL-c525t-92668e434f2b05a910fffad21f8be1f1930c9918a2b5d841adcff81018cc95c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44711451$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44711451$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,2884,2885,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27980159$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Harms, Alexander</creatorcontrib><creatorcontrib>Maisonneuve, Etienne</creatorcontrib><creatorcontrib>Gerdes, Kenn</creatorcontrib><title>Mechanisms of bacterial persistence during stress and antibiotic exposure</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Bacterial persister cells avoid antibiotic-induced death by entering a physiologically dormant state and are considered a major cause of antibiotic treatment failure and relapsing infections. Such dormant cells form stochastically, but also in response to environmental cues, by various pathways that are usually controlled by the second messenger (p)ppGpp. For example, toxin-antitoxin modules have been shown to play a major role in persister formation in many model systems. More generally, the diversity of molecular mechanisms driving persister formation is increasingly recognized as the cause of physiological heterogeneity that underlies collective multistress and multidrug tolerance of persister subpopulations. In this Review, we summarize the current state of the field and highlight recent findings, with a focus on the molecular basis of persister formation and heterogeneity.</description><subject>Adaptation, Physiological - genetics</subject><subject>Adaptation, Physiological - physiology</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Anti-Bacterial Agents - therapeutic use</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Bacteria - drug effects</subject><subject>Bacteria - metabolism</subject><subject>Bacterial Infections - drug therapy</subject><subject>Bacterial Infections - microbiology</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacterial Toxins - antagonists & inhibitors</subject><subject>Bacterial Toxins - metabolism</subject><subject>Biofilms</subject><subject>Cellular biology</subject><subject>Cues</subject><subject>DNA Damage</subject><subject>Drug resistance</subject><subject>Drug Resistance, Multiple, Bacterial</subject><subject>Elementary Secondary Education</subject><subject>Formations</subject><subject>Guanosine Pentaphosphate - metabolism</subject><subject>Heterogeneity</subject><subject>Pathways</subject><subject>Persistence</subject><subject>Probability theory</subject><subject>Proton-Motive Force</subject><subject>Research Methodology</subject><subject>REVIEW SUMMARY</subject><subject>Sigma Factor - metabolism</subject><subject>Signal Transduction</subject><subject>SOS Response (Genetics)</subject><subject>Stochastic Processes</subject><subject>Stress response</subject><subject>Stress, Physiological - genetics</subject><subject>Stress, Physiological - physiology</subject><subject>Tolerances</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0TtPwzAQB3ALgaA8ZiZQJBaWwp0fiT2iipcEYoE5chwbXLVJ8SUSfHuMWhiYGCwP9_PJd3_GjhEuEHl5SS76zvkLa4Pkpd5iEwSjpoaD2GYTAFFONVRqj-0TzQFyzYhdtscrowGVmbD7R-_ebBdpSUUfisa6wadoF8XKJ4o0fHcv2jHF7rWgIXmiwnZtPkNsYj9EV_iPVU9j8odsJ9gF-aPNfcBebq6fZ3fTh6fb-9nVw9Qprob8tbLUXgoZeAPKGoQQgm05Bt14DGgEOGNQW96oVku0rQtBI6B2ziinxAE7X_ddpf599DTUy0jOLxa28_1INWoNwAFB_4OWWuQ1CPgHVXm_BiqR6dkfOu_H1OWZs5JGQiV1mdXlWrnUEyUf6lWKS5s-a4T6O7t6k129yS6_ON30HZulb3_9T1gZnKzBnIY-_dalrBClQvEF5vufwg</recordid><startdate>20161216</startdate><enddate>20161216</enddate><creator>Harms, Alexander</creator><creator>Maisonneuve, Etienne</creator><creator>Gerdes, Kenn</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20161216</creationdate><title>Mechanisms of bacterial persistence during stress and antibiotic exposure</title><author>Harms, Alexander ; Maisonneuve, Etienne ; Gerdes, Kenn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-92668e434f2b05a910fffad21f8be1f1930c9918a2b5d841adcff81018cc95c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptation, Physiological - genetics</topic><topic>Adaptation, Physiological - physiology</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Anti-Bacterial Agents - therapeutic use</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Bacteria - drug effects</topic><topic>Bacteria - metabolism</topic><topic>Bacterial Infections - drug therapy</topic><topic>Bacterial Infections - microbiology</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacterial Toxins - antagonists & inhibitors</topic><topic>Bacterial Toxins - metabolism</topic><topic>Biofilms</topic><topic>Cellular biology</topic><topic>Cues</topic><topic>DNA Damage</topic><topic>Drug resistance</topic><topic>Drug Resistance, Multiple, Bacterial</topic><topic>Elementary Secondary Education</topic><topic>Formations</topic><topic>Guanosine Pentaphosphate - metabolism</topic><topic>Heterogeneity</topic><topic>Pathways</topic><topic>Persistence</topic><topic>Probability theory</topic><topic>Proton-Motive Force</topic><topic>Research Methodology</topic><topic>REVIEW SUMMARY</topic><topic>Sigma Factor - metabolism</topic><topic>Signal Transduction</topic><topic>SOS Response (Genetics)</topic><topic>Stochastic Processes</topic><topic>Stress response</topic><topic>Stress, Physiological - genetics</topic><topic>Stress, Physiological - physiology</topic><topic>Tolerances</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harms, Alexander</creatorcontrib><creatorcontrib>Maisonneuve, Etienne</creatorcontrib><creatorcontrib>Gerdes, Kenn</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harms, Alexander</au><au>Maisonneuve, Etienne</au><au>Gerdes, Kenn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms of bacterial persistence during stress and antibiotic exposure</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2016-12-16</date><risdate>2016</risdate><volume>354</volume><issue>6318</issue><spage>1390</spage><epage>1390</epage><pages>1390-1390</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Bacterial persister cells avoid antibiotic-induced death by entering a physiologically dormant state and are considered a major cause of antibiotic treatment failure and relapsing infections. Such dormant cells form stochastically, but also in response to environmental cues, by various pathways that are usually controlled by the second messenger (p)ppGpp. For example, toxin-antitoxin modules have been shown to play a major role in persister formation in many model systems. More generally, the diversity of molecular mechanisms driving persister formation is increasingly recognized as the cause of physiological heterogeneity that underlies collective multistress and multidrug tolerance of persister subpopulations. In this Review, we summarize the current state of the field and highlight recent findings, with a focus on the molecular basis of persister formation and heterogeneity.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>27980159</pmid><doi>10.1126/science.aaf4268</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2016-12, Vol.354 (6318), p.1390-1390 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_1880020108 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; American Association for the Advancement of Science |
subjects | Adaptation, Physiological - genetics Adaptation, Physiological - physiology Anti-Bacterial Agents - pharmacology Anti-Bacterial Agents - therapeutic use Antibiotics Bacteria Bacteria - drug effects Bacteria - metabolism Bacterial Infections - drug therapy Bacterial Infections - microbiology Bacterial Proteins - metabolism Bacterial Toxins - antagonists & inhibitors Bacterial Toxins - metabolism Biofilms Cellular biology Cues DNA Damage Drug resistance Drug Resistance, Multiple, Bacterial Elementary Secondary Education Formations Guanosine Pentaphosphate - metabolism Heterogeneity Pathways Persistence Probability theory Proton-Motive Force Research Methodology REVIEW SUMMARY Sigma Factor - metabolism Signal Transduction SOS Response (Genetics) Stochastic Processes Stress response Stress, Physiological - genetics Stress, Physiological - physiology Tolerances |
title | Mechanisms of bacterial persistence during stress and antibiotic exposure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A49%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20of%20bacterial%20persistence%20during%20stress%20and%20antibiotic%20exposure&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Harms,%20Alexander&rft.date=2016-12-16&rft.volume=354&rft.issue=6318&rft.spage=1390&rft.epage=1390&rft.pages=1390-1390&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.aaf4268&rft_dat=%3Cjstor_proqu%3E44711451%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1849407486&rft_id=info:pmid/27980159&rft_jstor_id=44711451&rfr_iscdi=true |