Mechanisms of bacterial persistence during stress and antibiotic exposure

Bacterial persister cells avoid antibiotic-induced death by entering a physiologically dormant state and are considered a major cause of antibiotic treatment failure and relapsing infections. Such dormant cells form stochastically, but also in response to environmental cues, by various pathways that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2016-12, Vol.354 (6318), p.1390-1390
Hauptverfasser: Harms, Alexander, Maisonneuve, Etienne, Gerdes, Kenn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1390
container_issue 6318
container_start_page 1390
container_title Science (American Association for the Advancement of Science)
container_volume 354
creator Harms, Alexander
Maisonneuve, Etienne
Gerdes, Kenn
description Bacterial persister cells avoid antibiotic-induced death by entering a physiologically dormant state and are considered a major cause of antibiotic treatment failure and relapsing infections. Such dormant cells form stochastically, but also in response to environmental cues, by various pathways that are usually controlled by the second messenger (p)ppGpp. For example, toxin-antitoxin modules have been shown to play a major role in persister formation in many model systems. More generally, the diversity of molecular mechanisms driving persister formation is increasingly recognized as the cause of physiological heterogeneity that underlies collective multistress and multidrug tolerance of persister subpopulations. In this Review, we summarize the current state of the field and highlight recent findings, with a focus on the molecular basis of persister formation and heterogeneity.
doi_str_mv 10.1126/science.aaf4268
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880020108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44711451</jstor_id><sourcerecordid>44711451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-92668e434f2b05a910fffad21f8be1f1930c9918a2b5d841adcff81018cc95c53</originalsourceid><addsrcrecordid>eNqN0TtPwzAQB3ALgaA8ZiZQJBaWwp0fiT2iipcEYoE5chwbXLVJ8SUSfHuMWhiYGCwP9_PJd3_GjhEuEHl5SS76zvkLa4Pkpd5iEwSjpoaD2GYTAFFONVRqj-0TzQFyzYhdtscrowGVmbD7R-_ebBdpSUUfisa6wadoF8XKJ4o0fHcv2jHF7rWgIXmiwnZtPkNsYj9EV_iPVU9j8odsJ9gF-aPNfcBebq6fZ3fTh6fb-9nVw9Qprob8tbLUXgoZeAPKGoQQgm05Bt14DGgEOGNQW96oVku0rQtBI6B2ziinxAE7X_ddpf599DTUy0jOLxa28_1INWoNwAFB_4OWWuQ1CPgHVXm_BiqR6dkfOu_H1OWZs5JGQiV1mdXlWrnUEyUf6lWKS5s-a4T6O7t6k129yS6_ON30HZulb3_9T1gZnKzBnIY-_dalrBClQvEF5vufwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1849407486</pqid></control><display><type>article</type><title>Mechanisms of bacterial persistence during stress and antibiotic exposure</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>American Association for the Advancement of Science</source><creator>Harms, Alexander ; Maisonneuve, Etienne ; Gerdes, Kenn</creator><creatorcontrib>Harms, Alexander ; Maisonneuve, Etienne ; Gerdes, Kenn</creatorcontrib><description>Bacterial persister cells avoid antibiotic-induced death by entering a physiologically dormant state and are considered a major cause of antibiotic treatment failure and relapsing infections. Such dormant cells form stochastically, but also in response to environmental cues, by various pathways that are usually controlled by the second messenger (p)ppGpp. For example, toxin-antitoxin modules have been shown to play a major role in persister formation in many model systems. More generally, the diversity of molecular mechanisms driving persister formation is increasingly recognized as the cause of physiological heterogeneity that underlies collective multistress and multidrug tolerance of persister subpopulations. In this Review, we summarize the current state of the field and highlight recent findings, with a focus on the molecular basis of persister formation and heterogeneity.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aaf4268</identifier><identifier>PMID: 27980159</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Adaptation, Physiological - genetics ; Adaptation, Physiological - physiology ; Anti-Bacterial Agents - pharmacology ; Anti-Bacterial Agents - therapeutic use ; Antibiotics ; Bacteria ; Bacteria - drug effects ; Bacteria - metabolism ; Bacterial Infections - drug therapy ; Bacterial Infections - microbiology ; Bacterial Proteins - metabolism ; Bacterial Toxins - antagonists &amp; inhibitors ; Bacterial Toxins - metabolism ; Biofilms ; Cellular biology ; Cues ; DNA Damage ; Drug resistance ; Drug Resistance, Multiple, Bacterial ; Elementary Secondary Education ; Formations ; Guanosine Pentaphosphate - metabolism ; Heterogeneity ; Pathways ; Persistence ; Probability theory ; Proton-Motive Force ; Research Methodology ; REVIEW SUMMARY ; Sigma Factor - metabolism ; Signal Transduction ; SOS Response (Genetics) ; Stochastic Processes ; Stress response ; Stress, Physiological - genetics ; Stress, Physiological - physiology ; Tolerances</subject><ispartof>Science (American Association for the Advancement of Science), 2016-12, Vol.354 (6318), p.1390-1390</ispartof><rights>Copyright © 2016 American Association for the Advancement of Science</rights><rights>Copyright © 2016, American Association for the Advancement of Science.</rights><rights>Copyright © 2016, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-92668e434f2b05a910fffad21f8be1f1930c9918a2b5d841adcff81018cc95c53</citedby><cites>FETCH-LOGICAL-c525t-92668e434f2b05a910fffad21f8be1f1930c9918a2b5d841adcff81018cc95c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44711451$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44711451$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,2884,2885,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27980159$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Harms, Alexander</creatorcontrib><creatorcontrib>Maisonneuve, Etienne</creatorcontrib><creatorcontrib>Gerdes, Kenn</creatorcontrib><title>Mechanisms of bacterial persistence during stress and antibiotic exposure</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Bacterial persister cells avoid antibiotic-induced death by entering a physiologically dormant state and are considered a major cause of antibiotic treatment failure and relapsing infections. Such dormant cells form stochastically, but also in response to environmental cues, by various pathways that are usually controlled by the second messenger (p)ppGpp. For example, toxin-antitoxin modules have been shown to play a major role in persister formation in many model systems. More generally, the diversity of molecular mechanisms driving persister formation is increasingly recognized as the cause of physiological heterogeneity that underlies collective multistress and multidrug tolerance of persister subpopulations. In this Review, we summarize the current state of the field and highlight recent findings, with a focus on the molecular basis of persister formation and heterogeneity.</description><subject>Adaptation, Physiological - genetics</subject><subject>Adaptation, Physiological - physiology</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Anti-Bacterial Agents - therapeutic use</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Bacteria - drug effects</subject><subject>Bacteria - metabolism</subject><subject>Bacterial Infections - drug therapy</subject><subject>Bacterial Infections - microbiology</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacterial Toxins - antagonists &amp; inhibitors</subject><subject>Bacterial Toxins - metabolism</subject><subject>Biofilms</subject><subject>Cellular biology</subject><subject>Cues</subject><subject>DNA Damage</subject><subject>Drug resistance</subject><subject>Drug Resistance, Multiple, Bacterial</subject><subject>Elementary Secondary Education</subject><subject>Formations</subject><subject>Guanosine Pentaphosphate - metabolism</subject><subject>Heterogeneity</subject><subject>Pathways</subject><subject>Persistence</subject><subject>Probability theory</subject><subject>Proton-Motive Force</subject><subject>Research Methodology</subject><subject>REVIEW SUMMARY</subject><subject>Sigma Factor - metabolism</subject><subject>Signal Transduction</subject><subject>SOS Response (Genetics)</subject><subject>Stochastic Processes</subject><subject>Stress response</subject><subject>Stress, Physiological - genetics</subject><subject>Stress, Physiological - physiology</subject><subject>Tolerances</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0TtPwzAQB3ALgaA8ZiZQJBaWwp0fiT2iipcEYoE5chwbXLVJ8SUSfHuMWhiYGCwP9_PJd3_GjhEuEHl5SS76zvkLa4Pkpd5iEwSjpoaD2GYTAFFONVRqj-0TzQFyzYhdtscrowGVmbD7R-_ebBdpSUUfisa6wadoF8XKJ4o0fHcv2jHF7rWgIXmiwnZtPkNsYj9EV_iPVU9j8odsJ9gF-aPNfcBebq6fZ3fTh6fb-9nVw9Qprob8tbLUXgoZeAPKGoQQgm05Bt14DGgEOGNQW96oVku0rQtBI6B2ziinxAE7X_ddpf599DTUy0jOLxa28_1INWoNwAFB_4OWWuQ1CPgHVXm_BiqR6dkfOu_H1OWZs5JGQiV1mdXlWrnUEyUf6lWKS5s-a4T6O7t6k129yS6_ON30HZulb3_9T1gZnKzBnIY-_dalrBClQvEF5vufwg</recordid><startdate>20161216</startdate><enddate>20161216</enddate><creator>Harms, Alexander</creator><creator>Maisonneuve, Etienne</creator><creator>Gerdes, Kenn</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20161216</creationdate><title>Mechanisms of bacterial persistence during stress and antibiotic exposure</title><author>Harms, Alexander ; Maisonneuve, Etienne ; Gerdes, Kenn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-92668e434f2b05a910fffad21f8be1f1930c9918a2b5d841adcff81018cc95c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptation, Physiological - genetics</topic><topic>Adaptation, Physiological - physiology</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Anti-Bacterial Agents - therapeutic use</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Bacteria - drug effects</topic><topic>Bacteria - metabolism</topic><topic>Bacterial Infections - drug therapy</topic><topic>Bacterial Infections - microbiology</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacterial Toxins - antagonists &amp; inhibitors</topic><topic>Bacterial Toxins - metabolism</topic><topic>Biofilms</topic><topic>Cellular biology</topic><topic>Cues</topic><topic>DNA Damage</topic><topic>Drug resistance</topic><topic>Drug Resistance, Multiple, Bacterial</topic><topic>Elementary Secondary Education</topic><topic>Formations</topic><topic>Guanosine Pentaphosphate - metabolism</topic><topic>Heterogeneity</topic><topic>Pathways</topic><topic>Persistence</topic><topic>Probability theory</topic><topic>Proton-Motive Force</topic><topic>Research Methodology</topic><topic>REVIEW SUMMARY</topic><topic>Sigma Factor - metabolism</topic><topic>Signal Transduction</topic><topic>SOS Response (Genetics)</topic><topic>Stochastic Processes</topic><topic>Stress response</topic><topic>Stress, Physiological - genetics</topic><topic>Stress, Physiological - physiology</topic><topic>Tolerances</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harms, Alexander</creatorcontrib><creatorcontrib>Maisonneuve, Etienne</creatorcontrib><creatorcontrib>Gerdes, Kenn</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harms, Alexander</au><au>Maisonneuve, Etienne</au><au>Gerdes, Kenn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms of bacterial persistence during stress and antibiotic exposure</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2016-12-16</date><risdate>2016</risdate><volume>354</volume><issue>6318</issue><spage>1390</spage><epage>1390</epage><pages>1390-1390</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Bacterial persister cells avoid antibiotic-induced death by entering a physiologically dormant state and are considered a major cause of antibiotic treatment failure and relapsing infections. Such dormant cells form stochastically, but also in response to environmental cues, by various pathways that are usually controlled by the second messenger (p)ppGpp. For example, toxin-antitoxin modules have been shown to play a major role in persister formation in many model systems. More generally, the diversity of molecular mechanisms driving persister formation is increasingly recognized as the cause of physiological heterogeneity that underlies collective multistress and multidrug tolerance of persister subpopulations. In this Review, we summarize the current state of the field and highlight recent findings, with a focus on the molecular basis of persister formation and heterogeneity.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>27980159</pmid><doi>10.1126/science.aaf4268</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2016-12, Vol.354 (6318), p.1390-1390
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_1880020108
source MEDLINE; JSTOR Archive Collection A-Z Listing; American Association for the Advancement of Science
subjects Adaptation, Physiological - genetics
Adaptation, Physiological - physiology
Anti-Bacterial Agents - pharmacology
Anti-Bacterial Agents - therapeutic use
Antibiotics
Bacteria
Bacteria - drug effects
Bacteria - metabolism
Bacterial Infections - drug therapy
Bacterial Infections - microbiology
Bacterial Proteins - metabolism
Bacterial Toxins - antagonists & inhibitors
Bacterial Toxins - metabolism
Biofilms
Cellular biology
Cues
DNA Damage
Drug resistance
Drug Resistance, Multiple, Bacterial
Elementary Secondary Education
Formations
Guanosine Pentaphosphate - metabolism
Heterogeneity
Pathways
Persistence
Probability theory
Proton-Motive Force
Research Methodology
REVIEW SUMMARY
Sigma Factor - metabolism
Signal Transduction
SOS Response (Genetics)
Stochastic Processes
Stress response
Stress, Physiological - genetics
Stress, Physiological - physiology
Tolerances
title Mechanisms of bacterial persistence during stress and antibiotic exposure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A49%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20of%20bacterial%20persistence%20during%20stress%20and%20antibiotic%20exposure&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Harms,%20Alexander&rft.date=2016-12-16&rft.volume=354&rft.issue=6318&rft.spage=1390&rft.epage=1390&rft.pages=1390-1390&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.aaf4268&rft_dat=%3Cjstor_proqu%3E44711451%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1849407486&rft_id=info:pmid/27980159&rft_jstor_id=44711451&rfr_iscdi=true