Quantifying uncertainty in soot volume fraction estimates using Bayesian inference of auto-correlated laser-induced incandescence measurements
Auto-correlated laser-induced incandescence (AC-LII) infers the soot volume fraction (SVF) of soot particles by comparing the spectral incandescence from laser-energized particles to the pyrometrically inferred peak soot temperature. This calculation requires detailed knowledge of model parameters s...
Gespeichert in:
Veröffentlicht in: | Applied physics. B, Lasers and optics Lasers and optics, 2016, Vol.122 (1), p.1-16, Article 1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Applied physics. B, Lasers and optics |
container_volume | 122 |
creator | Hadwin, Paul J. Sipkens, T. A. Thomson, K. A. Liu, F. Daun, K. J. |
description | Auto-correlated laser-induced incandescence (AC-LII) infers the soot volume fraction (SVF) of soot particles by comparing the spectral incandescence from laser-energized particles to the pyrometrically inferred peak soot temperature. This calculation requires detailed knowledge of model parameters such as the absorption function of soot, which may vary with combustion chemistry, soot age, and the internal structure of the soot. This work presents a Bayesian methodology to quantify such uncertainties. This technique treats the additional “nuisance” model parameters, including the soot absorption function, as stochastic variables and incorporates the current state of knowledge of these parameters into the inference process through maximum entropy priors. While standard AC-LII analysis provides a point estimate of the SVF, Bayesian techniques infer the posterior probability density, which will allow scientists and engineers to better assess the reliability of AC-LII inferred SVFs in the context of environmental regulations and competing diagnostics. |
doi_str_mv | 10.1007/s00340-015-6287-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880018246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880018246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-6054c5032e359f7fb693ee3d865cef220dff6aef29799fb1f0f54a551806f91e3</originalsourceid><addsrcrecordid>eNp9kEFrFTEQx4Mo9Nn6AXrL0Ut0kt3NZo9atAoFEew5pNlJSdlNaiYR3pfwM5vn82wuk4Hfb5j5M3Yt4Z0EmN8TwDCCADkJrcws9At2kOOgBOhxeckOsIxaKDnLC_aa6An608Yc2O_vzaUawzGmR96Sx1JdTPXIY-KUc-W_8tZ25KE4X2NOHKnG3VUk3ujkfHRHpOhSFwIW7BN4Dty1moXPpeDW2ZVvjrCImNbmexeTd2lF8n_xHR21gjumSlfsVXAb4Zt_9ZLdf_704-aLuPt2-_Xmw53wozJVaJhGP8GgcJiWMIcHvQyIw2r05DEoBWsI2vXfMi9LeJABwjS6aZIGdFgkDpfs7Xnuc8k_W7_J7rGvs20uYW5kpTEA0qhRd1SeUV8yUcFgn0tPoBytBHvK3p6ztz17e8renhx1dqiz6RGLfcqtpH7Rf6Q_njaLcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880018246</pqid></control><display><type>article</type><title>Quantifying uncertainty in soot volume fraction estimates using Bayesian inference of auto-correlated laser-induced incandescence measurements</title><source>SpringerLink Journals (MCLS)</source><creator>Hadwin, Paul J. ; Sipkens, T. A. ; Thomson, K. A. ; Liu, F. ; Daun, K. J.</creator><creatorcontrib>Hadwin, Paul J. ; Sipkens, T. A. ; Thomson, K. A. ; Liu, F. ; Daun, K. J.</creatorcontrib><description>Auto-correlated laser-induced incandescence (AC-LII) infers the soot volume fraction (SVF) of soot particles by comparing the spectral incandescence from laser-energized particles to the pyrometrically inferred peak soot temperature. This calculation requires detailed knowledge of model parameters such as the absorption function of soot, which may vary with combustion chemistry, soot age, and the internal structure of the soot. This work presents a Bayesian methodology to quantify such uncertainties. This technique treats the additional “nuisance” model parameters, including the soot absorption function, as stochastic variables and incorporates the current state of knowledge of these parameters into the inference process through maximum entropy priors. While standard AC-LII analysis provides a point estimate of the SVF, Bayesian techniques infer the posterior probability density, which will allow scientists and engineers to better assess the reliability of AC-LII inferred SVFs in the context of environmental regulations and competing diagnostics.</description><identifier>ISSN: 0946-2171</identifier><identifier>EISSN: 1432-0649</identifier><identifier>DOI: 10.1007/s00340-015-6287-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bayesian analysis ; Engineering ; Estimates ; Laser induced incandescence ; Lasers ; Mathematical models ; Optical Devices ; Optics ; Parameters ; Particle physics ; Photonics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Optics ; Soot ; Volume fraction</subject><ispartof>Applied physics. B, Lasers and optics, 2016, Vol.122 (1), p.1-16, Article 1</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-6054c5032e359f7fb693ee3d865cef220dff6aef29799fb1f0f54a551806f91e3</citedby><cites>FETCH-LOGICAL-c428t-6054c5032e359f7fb693ee3d865cef220dff6aef29799fb1f0f54a551806f91e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00340-015-6287-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00340-015-6287-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hadwin, Paul J.</creatorcontrib><creatorcontrib>Sipkens, T. A.</creatorcontrib><creatorcontrib>Thomson, K. A.</creatorcontrib><creatorcontrib>Liu, F.</creatorcontrib><creatorcontrib>Daun, K. J.</creatorcontrib><title>Quantifying uncertainty in soot volume fraction estimates using Bayesian inference of auto-correlated laser-induced incandescence measurements</title><title>Applied physics. B, Lasers and optics</title><addtitle>Appl. Phys. B</addtitle><description>Auto-correlated laser-induced incandescence (AC-LII) infers the soot volume fraction (SVF) of soot particles by comparing the spectral incandescence from laser-energized particles to the pyrometrically inferred peak soot temperature. This calculation requires detailed knowledge of model parameters such as the absorption function of soot, which may vary with combustion chemistry, soot age, and the internal structure of the soot. This work presents a Bayesian methodology to quantify such uncertainties. This technique treats the additional “nuisance” model parameters, including the soot absorption function, as stochastic variables and incorporates the current state of knowledge of these parameters into the inference process through maximum entropy priors. While standard AC-LII analysis provides a point estimate of the SVF, Bayesian techniques infer the posterior probability density, which will allow scientists and engineers to better assess the reliability of AC-LII inferred SVFs in the context of environmental regulations and competing diagnostics.</description><subject>Bayesian analysis</subject><subject>Engineering</subject><subject>Estimates</subject><subject>Laser induced incandescence</subject><subject>Lasers</subject><subject>Mathematical models</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Parameters</subject><subject>Particle physics</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Optics</subject><subject>Soot</subject><subject>Volume fraction</subject><issn>0946-2171</issn><issn>1432-0649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kEFrFTEQx4Mo9Nn6AXrL0Ut0kt3NZo9atAoFEew5pNlJSdlNaiYR3pfwM5vn82wuk4Hfb5j5M3Yt4Z0EmN8TwDCCADkJrcws9At2kOOgBOhxeckOsIxaKDnLC_aa6An608Yc2O_vzaUawzGmR96Sx1JdTPXIY-KUc-W_8tZ25KE4X2NOHKnG3VUk3ujkfHRHpOhSFwIW7BN4Dty1moXPpeDW2ZVvjrCImNbmexeTd2lF8n_xHR21gjumSlfsVXAb4Zt_9ZLdf_704-aLuPt2-_Xmw53wozJVaJhGP8GgcJiWMIcHvQyIw2r05DEoBWsI2vXfMi9LeJABwjS6aZIGdFgkDpfs7Xnuc8k_W7_J7rGvs20uYW5kpTEA0qhRd1SeUV8yUcFgn0tPoBytBHvK3p6ztz17e8renhx1dqiz6RGLfcqtpH7Rf6Q_njaLcA</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Hadwin, Paul J.</creator><creator>Sipkens, T. A.</creator><creator>Thomson, K. A.</creator><creator>Liu, F.</creator><creator>Daun, K. J.</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>2016</creationdate><title>Quantifying uncertainty in soot volume fraction estimates using Bayesian inference of auto-correlated laser-induced incandescence measurements</title><author>Hadwin, Paul J. ; Sipkens, T. A. ; Thomson, K. A. ; Liu, F. ; Daun, K. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-6054c5032e359f7fb693ee3d865cef220dff6aef29799fb1f0f54a551806f91e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bayesian analysis</topic><topic>Engineering</topic><topic>Estimates</topic><topic>Laser induced incandescence</topic><topic>Lasers</topic><topic>Mathematical models</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Parameters</topic><topic>Particle physics</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Optics</topic><topic>Soot</topic><topic>Volume fraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hadwin, Paul J.</creatorcontrib><creatorcontrib>Sipkens, T. A.</creatorcontrib><creatorcontrib>Thomson, K. A.</creatorcontrib><creatorcontrib>Liu, F.</creatorcontrib><creatorcontrib>Daun, K. J.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics. B, Lasers and optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hadwin, Paul J.</au><au>Sipkens, T. A.</au><au>Thomson, K. A.</au><au>Liu, F.</au><au>Daun, K. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying uncertainty in soot volume fraction estimates using Bayesian inference of auto-correlated laser-induced incandescence measurements</atitle><jtitle>Applied physics. B, Lasers and optics</jtitle><stitle>Appl. Phys. B</stitle><date>2016</date><risdate>2016</risdate><volume>122</volume><issue>1</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><artnum>1</artnum><issn>0946-2171</issn><eissn>1432-0649</eissn><abstract>Auto-correlated laser-induced incandescence (AC-LII) infers the soot volume fraction (SVF) of soot particles by comparing the spectral incandescence from laser-energized particles to the pyrometrically inferred peak soot temperature. This calculation requires detailed knowledge of model parameters such as the absorption function of soot, which may vary with combustion chemistry, soot age, and the internal structure of the soot. This work presents a Bayesian methodology to quantify such uncertainties. This technique treats the additional “nuisance” model parameters, including the soot absorption function, as stochastic variables and incorporates the current state of knowledge of these parameters into the inference process through maximum entropy priors. While standard AC-LII analysis provides a point estimate of the SVF, Bayesian techniques infer the posterior probability density, which will allow scientists and engineers to better assess the reliability of AC-LII inferred SVFs in the context of environmental regulations and competing diagnostics.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00340-015-6287-6</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0946-2171 |
ispartof | Applied physics. B, Lasers and optics, 2016, Vol.122 (1), p.1-16, Article 1 |
issn | 0946-2171 1432-0649 |
language | eng |
recordid | cdi_proquest_miscellaneous_1880018246 |
source | SpringerLink Journals (MCLS) |
subjects | Bayesian analysis Engineering Estimates Laser induced incandescence Lasers Mathematical models Optical Devices Optics Parameters Particle physics Photonics Physical Chemistry Physics Physics and Astronomy Quantum Optics Soot Volume fraction |
title | Quantifying uncertainty in soot volume fraction estimates using Bayesian inference of auto-correlated laser-induced incandescence measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T03%3A12%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20uncertainty%20in%20soot%20volume%20fraction%20estimates%20using%20Bayesian%20inference%20of%20auto-correlated%20laser-induced%20incandescence%20measurements&rft.jtitle=Applied%20physics.%20B,%20Lasers%20and%20optics&rft.au=Hadwin,%20Paul%20J.&rft.date=2016&rft.volume=122&rft.issue=1&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.artnum=1&rft.issn=0946-2171&rft.eissn=1432-0649&rft_id=info:doi/10.1007/s00340-015-6287-6&rft_dat=%3Cproquest_cross%3E1880018246%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880018246&rft_id=info:pmid/&rfr_iscdi=true |