Diode laser-based standoff absorption measurement of water film thickness in retro-reflection

A dual-wavelength diode laser-based absorption sensor for standoff point measurements of water film thickness on an opaque surface is presented. The sensor consists of a diode laser source, a foil as backscattering target, and off-axis paraboloids for collecting the fraction of the laser radiation t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. B, Lasers and optics Lasers and optics, 2016-09, Vol.122 (9), p.1-7, Article 249
Hauptverfasser: Pan, R., Brocksieper, C., Jeffries, J. B., Dreier, T., Schulz, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 9
container_start_page 1
container_title Applied physics. B, Lasers and optics
container_volume 122
creator Pan, R.
Brocksieper, C.
Jeffries, J. B.
Dreier, T.
Schulz, C.
description A dual-wavelength diode laser-based absorption sensor for standoff point measurements of water film thickness on an opaque surface is presented. The sensor consists of a diode laser source, a foil as backscattering target, and off-axis paraboloids for collecting the fraction of the laser radiation transmitted through the liquid layer via retro-reflection. Laser wavelengths in the near infrared at 1412 and 1353 nm are used where the temperature dependence of the liquid water absorption cross section is known. The lasers are fiber coupled and the detection of the retro-reflected light was accomplished through a multimode fiber and a single photodiode using time-division multiplexing. The water film thickness at a given temperature was determined from measured transmittance ratios at the two laser wavelengths. The sensor concept was first validated with measurement using a temperature-controlled calibration cell providing liquid layers of variable and known thickness between 100 and 1000 µm. Subsequently, the sensor was demonstrated successfully during recording the time-varying thickness of evaporating water films at fixed temperatures. The film thickness was recorded as a function of time at three temperatures down to 50 µm.
doi_str_mv 10.1007/s00340-016-6524-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880018001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880018001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-adf9e10b84c7929841bfac6783a3ee677ee1693eed0ffd3e6c1f2db6b51c009e3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8BL16ikzabtEdZP0HwokcJaTrRrm2zJi3ivze1HkRwYD4OzzvMvIQcczjjAOo8AuQCGHDJ5CoTTO2QBRd5xkCKcpcsoBSSZVzxfXIQ4wZSyKJYkOfLxtdIWxMxsCrVmsbB9LV3jpoq-rAdGt_TDk0cA3bYD9Q7-mEGDNQ1bUeH18a-9RgjbXoacAieBXQt2kl3SPacaSMe_fQlebq-elzfsvuHm7v1xT2zuSgHZmpXIoeqEFaVWVkIXjljpSpykyNKpRC5LNNYg3N1jtJyl9WVrFbcApSYL8npvHcb_PuIcdBdEy22renRj1HzogDgUyb05A-68WPo03XfVCGVBJEoPlM2-BjTQ3obms6ET81BT4br2XCdDNeT4VolTTZrYmL7Fwy_Nv8r-gLLpoRy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880867604</pqid></control><display><type>article</type><title>Diode laser-based standoff absorption measurement of water film thickness in retro-reflection</title><source>SpringerLink Journals - AutoHoldings</source><creator>Pan, R. ; Brocksieper, C. ; Jeffries, J. B. ; Dreier, T. ; Schulz, C.</creator><creatorcontrib>Pan, R. ; Brocksieper, C. ; Jeffries, J. B. ; Dreier, T. ; Schulz, C.</creatorcontrib><description>A dual-wavelength diode laser-based absorption sensor for standoff point measurements of water film thickness on an opaque surface is presented. The sensor consists of a diode laser source, a foil as backscattering target, and off-axis paraboloids for collecting the fraction of the laser radiation transmitted through the liquid layer via retro-reflection. Laser wavelengths in the near infrared at 1412 and 1353 nm are used where the temperature dependence of the liquid water absorption cross section is known. The lasers are fiber coupled and the detection of the retro-reflected light was accomplished through a multimode fiber and a single photodiode using time-division multiplexing. The water film thickness at a given temperature was determined from measured transmittance ratios at the two laser wavelengths. The sensor concept was first validated with measurement using a temperature-controlled calibration cell providing liquid layers of variable and known thickness between 100 and 1000 µm. Subsequently, the sensor was demonstrated successfully during recording the time-varying thickness of evaporating water films at fixed temperatures. The film thickness was recorded as a function of time at three temperatures down to 50 µm.</description><identifier>ISSN: 0946-2171</identifier><identifier>EISSN: 1432-0649</identifier><identifier>DOI: 10.1007/s00340-016-6524-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Absorption cross sections ; Applied physics ; Diodes ; Engineering ; Fiber lasers ; Fibers ; Film thickness ; Infrared lasers ; Infrared reflection ; Laser applications ; Lasers ; Liquids ; Near infrared radiation ; Optical Devices ; Optics ; Photodiodes ; Photonics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Optics ; Semiconductor lasers ; Sensors ; Temperature dependence ; Thickness ; Thickness measurement ; Time division multiplexing ; Time measurement ; Water ; Water absorption ; Water film ; Wavelengths</subject><ispartof>Applied physics. B, Lasers and optics, 2016-09, Vol.122 (9), p.1-7, Article 249</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-adf9e10b84c7929841bfac6783a3ee677ee1693eed0ffd3e6c1f2db6b51c009e3</citedby><cites>FETCH-LOGICAL-c349t-adf9e10b84c7929841bfac6783a3ee677ee1693eed0ffd3e6c1f2db6b51c009e3</cites><orcidid>0000-0001-7716-8344</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00340-016-6524-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00340-016-6524-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Pan, R.</creatorcontrib><creatorcontrib>Brocksieper, C.</creatorcontrib><creatorcontrib>Jeffries, J. B.</creatorcontrib><creatorcontrib>Dreier, T.</creatorcontrib><creatorcontrib>Schulz, C.</creatorcontrib><title>Diode laser-based standoff absorption measurement of water film thickness in retro-reflection</title><title>Applied physics. B, Lasers and optics</title><addtitle>Appl. Phys. B</addtitle><description>A dual-wavelength diode laser-based absorption sensor for standoff point measurements of water film thickness on an opaque surface is presented. The sensor consists of a diode laser source, a foil as backscattering target, and off-axis paraboloids for collecting the fraction of the laser radiation transmitted through the liquid layer via retro-reflection. Laser wavelengths in the near infrared at 1412 and 1353 nm are used where the temperature dependence of the liquid water absorption cross section is known. The lasers are fiber coupled and the detection of the retro-reflected light was accomplished through a multimode fiber and a single photodiode using time-division multiplexing. The water film thickness at a given temperature was determined from measured transmittance ratios at the two laser wavelengths. The sensor concept was first validated with measurement using a temperature-controlled calibration cell providing liquid layers of variable and known thickness between 100 and 1000 µm. Subsequently, the sensor was demonstrated successfully during recording the time-varying thickness of evaporating water films at fixed temperatures. The film thickness was recorded as a function of time at three temperatures down to 50 µm.</description><subject>Absorption cross sections</subject><subject>Applied physics</subject><subject>Diodes</subject><subject>Engineering</subject><subject>Fiber lasers</subject><subject>Fibers</subject><subject>Film thickness</subject><subject>Infrared lasers</subject><subject>Infrared reflection</subject><subject>Laser applications</subject><subject>Lasers</subject><subject>Liquids</subject><subject>Near infrared radiation</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photodiodes</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Optics</subject><subject>Semiconductor lasers</subject><subject>Sensors</subject><subject>Temperature dependence</subject><subject>Thickness</subject><subject>Thickness measurement</subject><subject>Time division multiplexing</subject><subject>Time measurement</subject><subject>Water</subject><subject>Water absorption</subject><subject>Water film</subject><subject>Wavelengths</subject><issn>0946-2171</issn><issn>1432-0649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG8BL16ikzabtEdZP0HwokcJaTrRrm2zJi3ivze1HkRwYD4OzzvMvIQcczjjAOo8AuQCGHDJ5CoTTO2QBRd5xkCKcpcsoBSSZVzxfXIQ4wZSyKJYkOfLxtdIWxMxsCrVmsbB9LV3jpoq-rAdGt_TDk0cA3bYD9Q7-mEGDNQ1bUeH18a-9RgjbXoacAieBXQt2kl3SPacaSMe_fQlebq-elzfsvuHm7v1xT2zuSgHZmpXIoeqEFaVWVkIXjljpSpykyNKpRC5LNNYg3N1jtJyl9WVrFbcApSYL8npvHcb_PuIcdBdEy22renRj1HzogDgUyb05A-68WPo03XfVCGVBJEoPlM2-BjTQ3obms6ET81BT4br2XCdDNeT4VolTTZrYmL7Fwy_Nv8r-gLLpoRy</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Pan, R.</creator><creator>Brocksieper, C.</creator><creator>Jeffries, J. B.</creator><creator>Dreier, T.</creator><creator>Schulz, C.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7716-8344</orcidid></search><sort><creationdate>20160901</creationdate><title>Diode laser-based standoff absorption measurement of water film thickness in retro-reflection</title><author>Pan, R. ; Brocksieper, C. ; Jeffries, J. B. ; Dreier, T. ; Schulz, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-adf9e10b84c7929841bfac6783a3ee677ee1693eed0ffd3e6c1f2db6b51c009e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Absorption cross sections</topic><topic>Applied physics</topic><topic>Diodes</topic><topic>Engineering</topic><topic>Fiber lasers</topic><topic>Fibers</topic><topic>Film thickness</topic><topic>Infrared lasers</topic><topic>Infrared reflection</topic><topic>Laser applications</topic><topic>Lasers</topic><topic>Liquids</topic><topic>Near infrared radiation</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photodiodes</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Optics</topic><topic>Semiconductor lasers</topic><topic>Sensors</topic><topic>Temperature dependence</topic><topic>Thickness</topic><topic>Thickness measurement</topic><topic>Time division multiplexing</topic><topic>Time measurement</topic><topic>Water</topic><topic>Water absorption</topic><topic>Water film</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, R.</creatorcontrib><creatorcontrib>Brocksieper, C.</creatorcontrib><creatorcontrib>Jeffries, J. B.</creatorcontrib><creatorcontrib>Dreier, T.</creatorcontrib><creatorcontrib>Schulz, C.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics. B, Lasers and optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, R.</au><au>Brocksieper, C.</au><au>Jeffries, J. B.</au><au>Dreier, T.</au><au>Schulz, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diode laser-based standoff absorption measurement of water film thickness in retro-reflection</atitle><jtitle>Applied physics. B, Lasers and optics</jtitle><stitle>Appl. Phys. B</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>122</volume><issue>9</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><artnum>249</artnum><issn>0946-2171</issn><eissn>1432-0649</eissn><abstract>A dual-wavelength diode laser-based absorption sensor for standoff point measurements of water film thickness on an opaque surface is presented. The sensor consists of a diode laser source, a foil as backscattering target, and off-axis paraboloids for collecting the fraction of the laser radiation transmitted through the liquid layer via retro-reflection. Laser wavelengths in the near infrared at 1412 and 1353 nm are used where the temperature dependence of the liquid water absorption cross section is known. The lasers are fiber coupled and the detection of the retro-reflected light was accomplished through a multimode fiber and a single photodiode using time-division multiplexing. The water film thickness at a given temperature was determined from measured transmittance ratios at the two laser wavelengths. The sensor concept was first validated with measurement using a temperature-controlled calibration cell providing liquid layers of variable and known thickness between 100 and 1000 µm. Subsequently, the sensor was demonstrated successfully during recording the time-varying thickness of evaporating water films at fixed temperatures. The film thickness was recorded as a function of time at three temperatures down to 50 µm.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00340-016-6524-7</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7716-8344</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0946-2171
ispartof Applied physics. B, Lasers and optics, 2016-09, Vol.122 (9), p.1-7, Article 249
issn 0946-2171
1432-0649
language eng
recordid cdi_proquest_miscellaneous_1880018001
source SpringerLink Journals - AutoHoldings
subjects Absorption cross sections
Applied physics
Diodes
Engineering
Fiber lasers
Fibers
Film thickness
Infrared lasers
Infrared reflection
Laser applications
Lasers
Liquids
Near infrared radiation
Optical Devices
Optics
Photodiodes
Photonics
Physical Chemistry
Physics
Physics and Astronomy
Quantum Optics
Semiconductor lasers
Sensors
Temperature dependence
Thickness
Thickness measurement
Time division multiplexing
Time measurement
Water
Water absorption
Water film
Wavelengths
title Diode laser-based standoff absorption measurement of water film thickness in retro-reflection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T20%3A30%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diode%20laser-based%20standoff%20absorption%20measurement%20of%20water%20film%20thickness%20in%20retro-reflection&rft.jtitle=Applied%20physics.%20B,%20Lasers%20and%20optics&rft.au=Pan,%20R.&rft.date=2016-09-01&rft.volume=122&rft.issue=9&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.artnum=249&rft.issn=0946-2171&rft.eissn=1432-0649&rft_id=info:doi/10.1007/s00340-016-6524-7&rft_dat=%3Cproquest_cross%3E1880018001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880867604&rft_id=info:pmid/&rfr_iscdi=true