Flow Physics of a Bluff-Body Swirl Stabilized Flame and their Prediction by Means of a Joint Eulerian Stochastic Field and Tabulated Chemistry Approach
In the frame of this work a transported joint scalar probability density function (PDF) method is combined with the flamelet generated manifolds (FGM) tabulated chemistry approach for large eddy simulation (LES) modeling of a three-dimensional turbulent premixed swirl burner. This strategy accounts...
Gespeichert in:
Veröffentlicht in: | Flow, turbulence and combustion turbulence and combustion, 2016-12, Vol.97 (4), p.1185-1210 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1210 |
---|---|
container_issue | 4 |
container_start_page | 1185 |
container_title | Flow, turbulence and combustion |
container_volume | 97 |
creator | Avdić, A. Kuenne, G. Janicka, J. |
description | In the frame of this work a transported joint scalar probability density function (PDF) method is combined with the flamelet generated manifolds (FGM) tabulated chemistry approach for large eddy simulation (LES) modeling of a three-dimensional turbulent premixed swirl burner. This strategy accounts for the turbulence-chemistry interaction at reasonable computational costs. At the same time, it allows the usage of detailed chemistry mechanisms for the creation of the chemical database. The simulation results obtained are comparatively assessed along with complementary measurements. Furthermore, transient and time-averaged data are used to provide insight into the flow physics of the bluff-body swirl stabilized flame considered. The sensitivity of the results to different modeling approaches regarding the predicted flame shape and its dynamics is also investigated, where the implemented approach is compared with the well-established artificially thickened flame (ATF) combustion model. Consequently, the investigation conducted in this work aims to provide a complete picture on the ability of the proposed combustion model to reproduce the flow conditions within complex bluff-body swirl stabilized flames. |
doi_str_mv | 10.1007/s10494-016-9781-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880014831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880014831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-41b0be5e2016c976c10b5eeecadb5e09143a803973b52fc2dc0b84627baf725f3</originalsourceid><addsrcrecordid>eNp1kcFOHSEUhidGE631AdyRuHFDC8PMAEu98do2NjVR1wSYMw6GO1yBiZm-SF-36HXRNHF1WHz_xzn5q-qUki-UEP41UdLIBhPaYckFxctedURbzjCVgu-XNxMd7qhoDqtPKT0RQjpO5FH1Z-3DC7odl-RsQmFAGl36eRjwZegXdPfiokd3WRvn3W_o0drrDSA99SiP4CK6jdA7m12YkFnQT9DTu-RHcFNGV7OH6PRUFMGOOmVn0dqB798U99rMXueiXY2wcSnHBV1stzFoO36uDgbtE5y8z-PqYX11v_qGb35df19d3GDLGplxQw0x0EJdDreSd5YS0wKA1X2ZRNKGaUGY5My09WDr3hIjmq7mRg-8bgd2XJ3vvOXb5xlSVmURC97rCcKcFBWCENoIRgt69h_6FOY4le3eKMF4K9tC0R1lY0gpwqC20W10XBQl6rUqtatKlY3Va1VqKZl6l0mFnR4h_mP-MPQXMOyYDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880837595</pqid></control><display><type>article</type><title>Flow Physics of a Bluff-Body Swirl Stabilized Flame and their Prediction by Means of a Joint Eulerian Stochastic Field and Tabulated Chemistry Approach</title><source>Springer Nature - Complete Springer Journals</source><creator>Avdić, A. ; Kuenne, G. ; Janicka, J.</creator><creatorcontrib>Avdić, A. ; Kuenne, G. ; Janicka, J.</creatorcontrib><description>In the frame of this work a transported joint scalar probability density function (PDF) method is combined with the flamelet generated manifolds (FGM) tabulated chemistry approach for large eddy simulation (LES) modeling of a three-dimensional turbulent premixed swirl burner. This strategy accounts for the turbulence-chemistry interaction at reasonable computational costs. At the same time, it allows the usage of detailed chemistry mechanisms for the creation of the chemical database. The simulation results obtained are comparatively assessed along with complementary measurements. Furthermore, transient and time-averaged data are used to provide insight into the flow physics of the bluff-body swirl stabilized flame considered. The sensitivity of the results to different modeling approaches regarding the predicted flame shape and its dynamics is also investigated, where the implemented approach is compared with the well-established artificially thickened flame (ATF) combustion model. Consequently, the investigation conducted in this work aims to provide a complete picture on the ability of the proposed combustion model to reproduce the flow conditions within complex bluff-body swirl stabilized flames.</description><identifier>ISSN: 1386-6184</identifier><identifier>EISSN: 1573-1987</identifier><identifier>DOI: 10.1007/s10494-016-9781-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Chemistry ; Combustion ; Computational fluid dynamics ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Fluid- and Aerodynamics ; Heat and Mass Transfer ; Large eddy simulation ; Mathematical models ; Predictions ; Probability density functions ; Three dimensional models ; Turbulence ; Turbulent flow ; Vortices</subject><ispartof>Flow, turbulence and combustion, 2016-12, Vol.97 (4), p.1185-1210</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-41b0be5e2016c976c10b5eeecadb5e09143a803973b52fc2dc0b84627baf725f3</citedby><cites>FETCH-LOGICAL-c349t-41b0be5e2016c976c10b5eeecadb5e09143a803973b52fc2dc0b84627baf725f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10494-016-9781-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10494-016-9781-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Avdić, A.</creatorcontrib><creatorcontrib>Kuenne, G.</creatorcontrib><creatorcontrib>Janicka, J.</creatorcontrib><title>Flow Physics of a Bluff-Body Swirl Stabilized Flame and their Prediction by Means of a Joint Eulerian Stochastic Field and Tabulated Chemistry Approach</title><title>Flow, turbulence and combustion</title><addtitle>Flow Turbulence Combust</addtitle><description>In the frame of this work a transported joint scalar probability density function (PDF) method is combined with the flamelet generated manifolds (FGM) tabulated chemistry approach for large eddy simulation (LES) modeling of a three-dimensional turbulent premixed swirl burner. This strategy accounts for the turbulence-chemistry interaction at reasonable computational costs. At the same time, it allows the usage of detailed chemistry mechanisms for the creation of the chemical database. The simulation results obtained are comparatively assessed along with complementary measurements. Furthermore, transient and time-averaged data are used to provide insight into the flow physics of the bluff-body swirl stabilized flame considered. The sensitivity of the results to different modeling approaches regarding the predicted flame shape and its dynamics is also investigated, where the implemented approach is compared with the well-established artificially thickened flame (ATF) combustion model. Consequently, the investigation conducted in this work aims to provide a complete picture on the ability of the proposed combustion model to reproduce the flow conditions within complex bluff-body swirl stabilized flames.</description><subject>Automotive Engineering</subject><subject>Chemistry</subject><subject>Combustion</subject><subject>Computational fluid dynamics</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Fluid- and Aerodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Large eddy simulation</subject><subject>Mathematical models</subject><subject>Predictions</subject><subject>Probability density functions</subject><subject>Three dimensional models</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Vortices</subject><issn>1386-6184</issn><issn>1573-1987</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kcFOHSEUhidGE631AdyRuHFDC8PMAEu98do2NjVR1wSYMw6GO1yBiZm-SF-36HXRNHF1WHz_xzn5q-qUki-UEP41UdLIBhPaYckFxctedURbzjCVgu-XNxMd7qhoDqtPKT0RQjpO5FH1Z-3DC7odl-RsQmFAGl36eRjwZegXdPfiokd3WRvn3W_o0drrDSA99SiP4CK6jdA7m12YkFnQT9DTu-RHcFNGV7OH6PRUFMGOOmVn0dqB798U99rMXueiXY2wcSnHBV1stzFoO36uDgbtE5y8z-PqYX11v_qGb35df19d3GDLGplxQw0x0EJdDreSd5YS0wKA1X2ZRNKGaUGY5My09WDr3hIjmq7mRg-8bgd2XJ3vvOXb5xlSVmURC97rCcKcFBWCENoIRgt69h_6FOY4le3eKMF4K9tC0R1lY0gpwqC20W10XBQl6rUqtatKlY3Va1VqKZl6l0mFnR4h_mP-MPQXMOyYDA</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Avdić, A.</creator><creator>Kuenne, G.</creator><creator>Janicka, J.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20161201</creationdate><title>Flow Physics of a Bluff-Body Swirl Stabilized Flame and their Prediction by Means of a Joint Eulerian Stochastic Field and Tabulated Chemistry Approach</title><author>Avdić, A. ; Kuenne, G. ; Janicka, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-41b0be5e2016c976c10b5eeecadb5e09143a803973b52fc2dc0b84627baf725f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Automotive Engineering</topic><topic>Chemistry</topic><topic>Combustion</topic><topic>Computational fluid dynamics</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Fluid- and Aerodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Large eddy simulation</topic><topic>Mathematical models</topic><topic>Predictions</topic><topic>Probability density functions</topic><topic>Three dimensional models</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Avdić, A.</creatorcontrib><creatorcontrib>Kuenne, G.</creatorcontrib><creatorcontrib>Janicka, J.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Flow, turbulence and combustion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avdić, A.</au><au>Kuenne, G.</au><au>Janicka, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow Physics of a Bluff-Body Swirl Stabilized Flame and their Prediction by Means of a Joint Eulerian Stochastic Field and Tabulated Chemistry Approach</atitle><jtitle>Flow, turbulence and combustion</jtitle><stitle>Flow Turbulence Combust</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>97</volume><issue>4</issue><spage>1185</spage><epage>1210</epage><pages>1185-1210</pages><issn>1386-6184</issn><eissn>1573-1987</eissn><abstract>In the frame of this work a transported joint scalar probability density function (PDF) method is combined with the flamelet generated manifolds (FGM) tabulated chemistry approach for large eddy simulation (LES) modeling of a three-dimensional turbulent premixed swirl burner. This strategy accounts for the turbulence-chemistry interaction at reasonable computational costs. At the same time, it allows the usage of detailed chemistry mechanisms for the creation of the chemical database. The simulation results obtained are comparatively assessed along with complementary measurements. Furthermore, transient and time-averaged data are used to provide insight into the flow physics of the bluff-body swirl stabilized flame considered. The sensitivity of the results to different modeling approaches regarding the predicted flame shape and its dynamics is also investigated, where the implemented approach is compared with the well-established artificially thickened flame (ATF) combustion model. Consequently, the investigation conducted in this work aims to provide a complete picture on the ability of the proposed combustion model to reproduce the flow conditions within complex bluff-body swirl stabilized flames.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10494-016-9781-y</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1386-6184 |
ispartof | Flow, turbulence and combustion, 2016-12, Vol.97 (4), p.1185-1210 |
issn | 1386-6184 1573-1987 |
language | eng |
recordid | cdi_proquest_miscellaneous_1880014831 |
source | Springer Nature - Complete Springer Journals |
subjects | Automotive Engineering Chemistry Combustion Computational fluid dynamics Engineering Engineering Fluid Dynamics Engineering Thermodynamics Fluid- and Aerodynamics Heat and Mass Transfer Large eddy simulation Mathematical models Predictions Probability density functions Three dimensional models Turbulence Turbulent flow Vortices |
title | Flow Physics of a Bluff-Body Swirl Stabilized Flame and their Prediction by Means of a Joint Eulerian Stochastic Field and Tabulated Chemistry Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T12%3A29%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow%20Physics%20of%20a%20Bluff-Body%20Swirl%20Stabilized%20Flame%20and%20their%20Prediction%20by%20Means%20of%20a%20Joint%20Eulerian%20Stochastic%20Field%20and%20Tabulated%20Chemistry%20Approach&rft.jtitle=Flow,%20turbulence%20and%20combustion&rft.au=Avdi%C4%87,%20A.&rft.date=2016-12-01&rft.volume=97&rft.issue=4&rft.spage=1185&rft.epage=1210&rft.pages=1185-1210&rft.issn=1386-6184&rft.eissn=1573-1987&rft_id=info:doi/10.1007/s10494-016-9781-y&rft_dat=%3Cproquest_cross%3E1880014831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880837595&rft_id=info:pmid/&rfr_iscdi=true |