Regularized extragradient method in multicriteria control problems with inaccurate data
The class of Hilbert space multicriteria optimization problems considered in the paper includes control problems for various dynamical systems with lumped as well as distributed parameters. An equilibrium point is sought under the assumption that the criteria and their derivatives are known approxim...
Gespeichert in:
Veröffentlicht in: | Differential equations 2016-11, Vol.52 (11), p.1504-1516 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1516 |
---|---|
container_issue | 11 |
container_start_page | 1504 |
container_title | Differential equations |
container_volume | 52 |
creator | Vasil’ev, F. P. Potapov, M. M. Artem’eva, L. A. |
description | The class of Hilbert space multicriteria optimization problems considered in the paper includes control problems for various dynamical systems with lumped as well as distributed parameters. An equilibrium point is sought under the assumption that the criteria and their derivatives are known approximately. We use a regularized extragradient method and prove its convergence. As a sample application of the general theory, we consider a control problem for a parabolic equation with two criteria. |
doi_str_mv | 10.1134/S0012266116110112 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880011075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4294003511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-650d3967bacb094f4973248ee8cbc5753f13b9cefb4d2ebdf157a2cadd9468ae3</originalsourceid><addsrcrecordid>eNp1kElLBDEQhYMoOI7-AG8BL15aU510On0UcYMBwQWPTTqpnon0okkal19vhvEgilBQh_re49Uj5BDYCQAXp_eMQZ5LCZCGAeRbZAaSqYwzxbfJbH3O1vddshfCM2OsKqGYkac7XE6d9u4TLcX36PXSa-twiLTHuBotdQPtpy46411E7zQ14xD92NEXPzYd9oG-ubhKmDZm8joitTrqfbLT6i7gwfeek8fLi4fz62xxe3VzfrbIDBdVzGTBLK9k2WjTsEq0oip5LhSiMo0pyoK3wJvKYNsIm2NjWyhKnRttbSWk0sjn5Hjjm9K8Thhi3btgsOv0gOMUalAqvQ4sWc3J0S_0eZz8kNIlqiikKpmQiYINZfwYgse2fvGu1_6jBlavq67_VJ00-UYTEjss0f9w_lf0BXZmgTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855687046</pqid></control><display><type>article</type><title>Regularized extragradient method in multicriteria control problems with inaccurate data</title><source>SpringerLink Journals</source><creator>Vasil’ev, F. P. ; Potapov, M. M. ; Artem’eva, L. A.</creator><creatorcontrib>Vasil’ev, F. P. ; Potapov, M. M. ; Artem’eva, L. A.</creatorcontrib><description>The class of Hilbert space multicriteria optimization problems considered in the paper includes control problems for various dynamical systems with lumped as well as distributed parameters. An equilibrium point is sought under the assumption that the criteria and their derivatives are known approximately. We use a regularized extragradient method and prove its convergence. As a sample application of the general theory, we consider a control problem for a parabolic equation with two criteria.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S0012266116110112</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Approximation ; Control systems ; Convergence ; Criteria ; Derivatives ; Difference and Functional Equations ; Differential equations ; Dynamical systems ; Equilibrium ; Hilbert space ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Numerical Methods ; Optimization ; Ordinary Differential Equations ; Partial Differential Equations ; Studies</subject><ispartof>Differential equations, 2016-11, Vol.52 (11), p.1504-1516</ispartof><rights>Pleiades Publishing, Ltd. 2016</rights><rights>Differential Equations is a copyright of Springer, 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-650d3967bacb094f4973248ee8cbc5753f13b9cefb4d2ebdf157a2cadd9468ae3</citedby><cites>FETCH-LOGICAL-c349t-650d3967bacb094f4973248ee8cbc5753f13b9cefb4d2ebdf157a2cadd9468ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0012266116110112$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0012266116110112$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Vasil’ev, F. P.</creatorcontrib><creatorcontrib>Potapov, M. M.</creatorcontrib><creatorcontrib>Artem’eva, L. A.</creatorcontrib><title>Regularized extragradient method in multicriteria control problems with inaccurate data</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>The class of Hilbert space multicriteria optimization problems considered in the paper includes control problems for various dynamical systems with lumped as well as distributed parameters. An equilibrium point is sought under the assumption that the criteria and their derivatives are known approximately. We use a regularized extragradient method and prove its convergence. As a sample application of the general theory, we consider a control problem for a parabolic equation with two criteria.</description><subject>Approximation</subject><subject>Control systems</subject><subject>Convergence</subject><subject>Criteria</subject><subject>Derivatives</subject><subject>Difference and Functional Equations</subject><subject>Differential equations</subject><subject>Dynamical systems</subject><subject>Equilibrium</subject><subject>Hilbert space</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Methods</subject><subject>Optimization</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Studies</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kElLBDEQhYMoOI7-AG8BL15aU510On0UcYMBwQWPTTqpnon0okkal19vhvEgilBQh_re49Uj5BDYCQAXp_eMQZ5LCZCGAeRbZAaSqYwzxbfJbH3O1vddshfCM2OsKqGYkac7XE6d9u4TLcX36PXSa-twiLTHuBotdQPtpy46411E7zQ14xD92NEXPzYd9oG-ubhKmDZm8joitTrqfbLT6i7gwfeek8fLi4fz62xxe3VzfrbIDBdVzGTBLK9k2WjTsEq0oip5LhSiMo0pyoK3wJvKYNsIm2NjWyhKnRttbSWk0sjn5Hjjm9K8Thhi3btgsOv0gOMUalAqvQ4sWc3J0S_0eZz8kNIlqiikKpmQiYINZfwYgse2fvGu1_6jBlavq67_VJ00-UYTEjss0f9w_lf0BXZmgTg</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Vasil’ev, F. P.</creator><creator>Potapov, M. M.</creator><creator>Artem’eva, L. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>04Q</scope><scope>04W</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20161101</creationdate><title>Regularized extragradient method in multicriteria control problems with inaccurate data</title><author>Vasil’ev, F. P. ; Potapov, M. M. ; Artem’eva, L. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-650d3967bacb094f4973248ee8cbc5753f13b9cefb4d2ebdf157a2cadd9468ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Control systems</topic><topic>Convergence</topic><topic>Criteria</topic><topic>Derivatives</topic><topic>Difference and Functional Equations</topic><topic>Differential equations</topic><topic>Dynamical systems</topic><topic>Equilibrium</topic><topic>Hilbert space</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Methods</topic><topic>Optimization</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasil’ev, F. P.</creatorcontrib><creatorcontrib>Potapov, M. M.</creatorcontrib><creatorcontrib>Artem’eva, L. A.</creatorcontrib><collection>CrossRef</collection><collection>India Database</collection><collection>India Database: Science & Technology</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasil’ev, F. P.</au><au>Potapov, M. M.</au><au>Artem’eva, L. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regularized extragradient method in multicriteria control problems with inaccurate data</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2016-11-01</date><risdate>2016</risdate><volume>52</volume><issue>11</issue><spage>1504</spage><epage>1516</epage><pages>1504-1516</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>The class of Hilbert space multicriteria optimization problems considered in the paper includes control problems for various dynamical systems with lumped as well as distributed parameters. An equilibrium point is sought under the assumption that the criteria and their derivatives are known approximately. We use a regularized extragradient method and prove its convergence. As a sample application of the general theory, we consider a control problem for a parabolic equation with two criteria.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0012266116110112</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-2661 |
ispartof | Differential equations, 2016-11, Vol.52 (11), p.1504-1516 |
issn | 0012-2661 1608-3083 |
language | eng |
recordid | cdi_proquest_miscellaneous_1880011075 |
source | SpringerLink Journals |
subjects | Approximation Control systems Convergence Criteria Derivatives Difference and Functional Equations Differential equations Dynamical systems Equilibrium Hilbert space Mathematical analysis Mathematics Mathematics and Statistics Numerical Methods Optimization Ordinary Differential Equations Partial Differential Equations Studies |
title | Regularized extragradient method in multicriteria control problems with inaccurate data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A04%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regularized%20extragradient%20method%20in%20multicriteria%20control%20problems%20with%20inaccurate%20data&rft.jtitle=Differential%20equations&rft.au=Vasil%E2%80%99ev,%20F.%20P.&rft.date=2016-11-01&rft.volume=52&rft.issue=11&rft.spage=1504&rft.epage=1516&rft.pages=1504-1516&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S0012266116110112&rft_dat=%3Cproquest_cross%3E4294003511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855687046&rft_id=info:pmid/&rfr_iscdi=true |