Regularized extragradient method in multicriteria control problems with inaccurate data

The class of Hilbert space multicriteria optimization problems considered in the paper includes control problems for various dynamical systems with lumped as well as distributed parameters. An equilibrium point is sought under the assumption that the criteria and their derivatives are known approxim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2016-11, Vol.52 (11), p.1504-1516
Hauptverfasser: Vasil’ev, F. P., Potapov, M. M., Artem’eva, L. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1516
container_issue 11
container_start_page 1504
container_title Differential equations
container_volume 52
creator Vasil’ev, F. P.
Potapov, M. M.
Artem’eva, L. A.
description The class of Hilbert space multicriteria optimization problems considered in the paper includes control problems for various dynamical systems with lumped as well as distributed parameters. An equilibrium point is sought under the assumption that the criteria and their derivatives are known approximately. We use a regularized extragradient method and prove its convergence. As a sample application of the general theory, we consider a control problem for a parabolic equation with two criteria.
doi_str_mv 10.1134/S0012266116110112
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1880011075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4294003511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-650d3967bacb094f4973248ee8cbc5753f13b9cefb4d2ebdf157a2cadd9468ae3</originalsourceid><addsrcrecordid>eNp1kElLBDEQhYMoOI7-AG8BL15aU510On0UcYMBwQWPTTqpnon0okkal19vhvEgilBQh_re49Uj5BDYCQAXp_eMQZ5LCZCGAeRbZAaSqYwzxbfJbH3O1vddshfCM2OsKqGYkac7XE6d9u4TLcX36PXSa-twiLTHuBotdQPtpy46411E7zQ14xD92NEXPzYd9oG-ubhKmDZm8joitTrqfbLT6i7gwfeek8fLi4fz62xxe3VzfrbIDBdVzGTBLK9k2WjTsEq0oip5LhSiMo0pyoK3wJvKYNsIm2NjWyhKnRttbSWk0sjn5Hjjm9K8Thhi3btgsOv0gOMUalAqvQ4sWc3J0S_0eZz8kNIlqiikKpmQiYINZfwYgse2fvGu1_6jBlavq67_VJ00-UYTEjss0f9w_lf0BXZmgTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855687046</pqid></control><display><type>article</type><title>Regularized extragradient method in multicriteria control problems with inaccurate data</title><source>SpringerLink Journals</source><creator>Vasil’ev, F. P. ; Potapov, M. M. ; Artem’eva, L. A.</creator><creatorcontrib>Vasil’ev, F. P. ; Potapov, M. M. ; Artem’eva, L. A.</creatorcontrib><description>The class of Hilbert space multicriteria optimization problems considered in the paper includes control problems for various dynamical systems with lumped as well as distributed parameters. An equilibrium point is sought under the assumption that the criteria and their derivatives are known approximately. We use a regularized extragradient method and prove its convergence. As a sample application of the general theory, we consider a control problem for a parabolic equation with two criteria.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S0012266116110112</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Approximation ; Control systems ; Convergence ; Criteria ; Derivatives ; Difference and Functional Equations ; Differential equations ; Dynamical systems ; Equilibrium ; Hilbert space ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Numerical Methods ; Optimization ; Ordinary Differential Equations ; Partial Differential Equations ; Studies</subject><ispartof>Differential equations, 2016-11, Vol.52 (11), p.1504-1516</ispartof><rights>Pleiades Publishing, Ltd. 2016</rights><rights>Differential Equations is a copyright of Springer, 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-650d3967bacb094f4973248ee8cbc5753f13b9cefb4d2ebdf157a2cadd9468ae3</citedby><cites>FETCH-LOGICAL-c349t-650d3967bacb094f4973248ee8cbc5753f13b9cefb4d2ebdf157a2cadd9468ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0012266116110112$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0012266116110112$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Vasil’ev, F. P.</creatorcontrib><creatorcontrib>Potapov, M. M.</creatorcontrib><creatorcontrib>Artem’eva, L. A.</creatorcontrib><title>Regularized extragradient method in multicriteria control problems with inaccurate data</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>The class of Hilbert space multicriteria optimization problems considered in the paper includes control problems for various dynamical systems with lumped as well as distributed parameters. An equilibrium point is sought under the assumption that the criteria and their derivatives are known approximately. We use a regularized extragradient method and prove its convergence. As a sample application of the general theory, we consider a control problem for a parabolic equation with two criteria.</description><subject>Approximation</subject><subject>Control systems</subject><subject>Convergence</subject><subject>Criteria</subject><subject>Derivatives</subject><subject>Difference and Functional Equations</subject><subject>Differential equations</subject><subject>Dynamical systems</subject><subject>Equilibrium</subject><subject>Hilbert space</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Methods</subject><subject>Optimization</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Studies</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kElLBDEQhYMoOI7-AG8BL15aU510On0UcYMBwQWPTTqpnon0okkal19vhvEgilBQh_re49Uj5BDYCQAXp_eMQZ5LCZCGAeRbZAaSqYwzxbfJbH3O1vddshfCM2OsKqGYkac7XE6d9u4TLcX36PXSa-twiLTHuBotdQPtpy46411E7zQ14xD92NEXPzYd9oG-ubhKmDZm8joitTrqfbLT6i7gwfeek8fLi4fz62xxe3VzfrbIDBdVzGTBLK9k2WjTsEq0oip5LhSiMo0pyoK3wJvKYNsIm2NjWyhKnRttbSWk0sjn5Hjjm9K8Thhi3btgsOv0gOMUalAqvQ4sWc3J0S_0eZz8kNIlqiikKpmQiYINZfwYgse2fvGu1_6jBlavq67_VJ00-UYTEjss0f9w_lf0BXZmgTg</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Vasil’ev, F. P.</creator><creator>Potapov, M. M.</creator><creator>Artem’eva, L. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>04Q</scope><scope>04W</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20161101</creationdate><title>Regularized extragradient method in multicriteria control problems with inaccurate data</title><author>Vasil’ev, F. P. ; Potapov, M. M. ; Artem’eva, L. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-650d3967bacb094f4973248ee8cbc5753f13b9cefb4d2ebdf157a2cadd9468ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Control systems</topic><topic>Convergence</topic><topic>Criteria</topic><topic>Derivatives</topic><topic>Difference and Functional Equations</topic><topic>Differential equations</topic><topic>Dynamical systems</topic><topic>Equilibrium</topic><topic>Hilbert space</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Methods</topic><topic>Optimization</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasil’ev, F. P.</creatorcontrib><creatorcontrib>Potapov, M. M.</creatorcontrib><creatorcontrib>Artem’eva, L. A.</creatorcontrib><collection>CrossRef</collection><collection>India Database</collection><collection>India Database: Science &amp; Technology</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasil’ev, F. P.</au><au>Potapov, M. M.</au><au>Artem’eva, L. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regularized extragradient method in multicriteria control problems with inaccurate data</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2016-11-01</date><risdate>2016</risdate><volume>52</volume><issue>11</issue><spage>1504</spage><epage>1516</epage><pages>1504-1516</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>The class of Hilbert space multicriteria optimization problems considered in the paper includes control problems for various dynamical systems with lumped as well as distributed parameters. An equilibrium point is sought under the assumption that the criteria and their derivatives are known approximately. We use a regularized extragradient method and prove its convergence. As a sample application of the general theory, we consider a control problem for a parabolic equation with two criteria.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0012266116110112</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-2661
ispartof Differential equations, 2016-11, Vol.52 (11), p.1504-1516
issn 0012-2661
1608-3083
language eng
recordid cdi_proquest_miscellaneous_1880011075
source SpringerLink Journals
subjects Approximation
Control systems
Convergence
Criteria
Derivatives
Difference and Functional Equations
Differential equations
Dynamical systems
Equilibrium
Hilbert space
Mathematical analysis
Mathematics
Mathematics and Statistics
Numerical Methods
Optimization
Ordinary Differential Equations
Partial Differential Equations
Studies
title Regularized extragradient method in multicriteria control problems with inaccurate data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A04%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regularized%20extragradient%20method%20in%20multicriteria%20control%20problems%20with%20inaccurate%20data&rft.jtitle=Differential%20equations&rft.au=Vasil%E2%80%99ev,%20F.%20P.&rft.date=2016-11-01&rft.volume=52&rft.issue=11&rft.spage=1504&rft.epage=1516&rft.pages=1504-1516&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S0012266116110112&rft_dat=%3Cproquest_cross%3E4294003511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855687046&rft_id=info:pmid/&rfr_iscdi=true